competition of the a-rhodium carbonyl intermediates in the
phosphine–rhodium catalyzed C–C bond forming reactions of
aryl boronic acids with a,b-unsaturated carbonyls in the toluene–
2 (a) T. Hayashi, M. Takahashi, Y. Takaya and M. Ogasawara, J. Am.
Chem. Soc., 2002, 124, 5052–5058; (b) A. Kina, H. Iwamura and T.
Hayashi, J. Am. Chem. Soc., 2006, 128, 3904–3905.
For Ru: (a) E. J. Farrington, J. M. Brown, C. F. J. Barnard and E.
Rowsell, Angew. Chem., Int. Ed., 2002, 41, 169–171; For Ir: (b) T. Koike,
X. Du, T. Sanada, Y. Danda and A. Mori, Angew. Chem., Int. Ed., 2003,
3
H O biphasic system. Subsequently, the reactions of aryl boronic
2
acids with a,b-unsaturated esters, amides and ketones have been
directed to favor both conjugate addition and Heck-type coupling
by synergistically tuning the supporting ligands on rhodium, the
boronic acid : olefin ratio and the other reaction conditions. In fact,
the Heck-type coupling was carried out for acrylates, acrylamides
and methyl vinyl ketone (MVK) with selectivity up to 100%,
4
1
2, 89–92; For Pd: (c) C. S. Cho and S. Uemura, J. Organomet. Chem.,
994, 465, 85–92; (d) X. Du, M. Suguro, K. Hirabayashi, A. Mori, T.
Nishikata, N. Hagiwara, K. Kawata, T. Okeda, H. F. Wang, K. Fugami
and M. Kosugi, Org. Lett., 2001, 3, 3313–3316; (e) M. M. S. Andappan,
P. Nilsson and M. Larhed, Chem. Commun., 2004, 218–219.
A. Mori, Y. Danda, T. Fujii, K. Hirabayashi and K. Osakada, J. Am.
Chem. Soc., 2001, 123, 10774–10775.
T. Yoshida, T. Okano, Y. Ueda and S. Otsuka, J. Am. Chem. Soc., 1981,
103, 3411–3422.
4
5
6
7
9
8% and 84%, respectively, using PPh
with excess olefins in the presence of K
9% conjugate addition selectivity was obtained using bidentate
ligands with a large bite angle, such as dppp and binap, with excess
boronic acids in the absence of K CO . These results clearly imply
3
as the supporting ligand
2
CO , while higher than
3
M. Lautens, A. Roy, K. Fukuoka, K. Fagnou and B. Mart ´ı n-Matute,
J. Am. Chem. Soc., 2001, 123, 5358–5359.
9
For examples of structurally characterized a-rhodium carbonyls: (a) C.
Bianchini, C. Mealli, A. Meli, D. M. Proserpio, M. Peruzzini, F.
Vizza and P. Frediani, J. Organomet. Chem., 1989, 369, C6–C10; (b) J.
Ott, L. M. Venanzi, C. A. Ghilardi, S. Midollini and A. Orlandini,
J. Organomet. Chem., 1985, 291, 89–100.
2
3
that high conjugate addition selectivity should not be assumed in
the rhodium-catalyzed reactions of aryl boronic acids with a,b-
unsaturated carbonyl compounds.
8
9
G. Zou, Z. Wang, J. Zhu and J. Tang, Chem. Commun., 2003, 2438–
2
439.
(a) L. Navarre, S. Darses and J.-P. Genet, Chem. Commun., 2004, 1108–
Acknowledgements
1
2
109; (b) L. Navarre, S. Darses and J.-P. Genet, Adv. Synth. Catal.,
006, 348, 317–322.
We thank National Natural Science Foundation of China
10 M. Lautens, J. Mancuso and H. Grover, Synthesis, 2004, 2006–2014.
11 J. L. Gras, K. J. Gombatz and G. Buchi, Org. Synth., 1981, 60,
(
20402006) for financial support.
8
8–90.
1
2 It was reported that RhCl showed much better performance as a
3
catalyst precursor than Rh(I) precursors, such as RhCl(cod), in the
rhodium-catalyzed 1,2-addition of arylboronic acids to aldehydes: A.
F u¨ rstner and H. Krause, Adv. Synth. Catal., 2001, 343, 343–350.
References
1
For reviews: (a) K. Yoshida and T. Hayashi, in: Modern Rhodium-
Catalyzed Organic Reactions, ed. P. A. Evans, Wiley-VCH, Weinheim,
13 For the bite angle data of phosphines see: (a) P. Dierkes and P. W. N. M.
Leeuwen, J. Chem. Soc., Dalton Trans., 1999, 1519–1529; (b) Z. Freixa
and P. W. N. M. Leeuwen, Dalton Trans., 2003, 1890–1901.
14 One of the reviewers suggests that the low activity of the smaller
bidentates may be a consequence of forming coordinatively saturated
tetraphosphine complexes of rhodium.
2
005, pp. 55-78; (b) K. Yoshida and T. Hayashi, in Boronic Acids, ed.
D. G. Hall, Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, 2005,
pp. 171-203; (c) T. Hayashi, Pure Appl. Chem., 2004, 76, 465–475;
(
(
d) T. Hayashi and K. Yamasaki, Chem. Rev., 2003, 103, 2829–2844;
e) K. Fagnou and M. Lautens, Chem. Rev., 2003, 103, 169–196; (f) T.
Hayashi, Synlett, 2001, 879–887; For representative examples: (g) M.
15 For cinnamaldehyde, instead of conjugate addition or Heck-type
coupling, a new type of coupling-conjugate reduction cascade reaction
Sakai, H. Hayashi and N. Miyaura, Organometallics, 1997, 16, 4229–
4
231; (h) Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai and N.
3
occurred with the Rh–PPh biphasic system. Z. Wang, G. Zou and
J. Tang, Chem. Commun., 2004, 1192–1193.
16 (a) A. Abiko, Acc. Chem. Res., 2004, 37, 387–395; (b) Y. Mori,
K. Manabe and S. Kobayashi, Angew. Chem., Int. Ed., 2001, 40,
2815–2818; (c) Y. Mori, J. Kobayashi, K. Manabe and S. Kobayashi,
Tetrahedron, 2002, 58, 8263–8268; (d) K. Yoshida, M. Ogasawara and
T. Hayashi, J. Org. Chem., 2003, 68, 1901–1905.
Miyaura, J. Am. Chem. Soc., 1998, 120, 5579–5580; (i) M. Kuriyama,
K. Nagai, K. Yamada, Y. Miwa, T. Taga and K. Tomioka, J. Am.
Chem. Soc., 2002, 124, 8932–8939; (j) J.-F. Paquin, C. Defieber, C. R. J.
Stephenson and E. M. Carreira, J. Am. Chem. Soc., 2005, 127, 10850–
1
0851; (k) R. Shintani, W. Duan, T. Nagano, A. Okada and T. Hayashi,
Angew. Chem., Int. Ed., 2005, 44, 4611–4614.
3
064 | Dalton Trans., 2007, 3055–3064
This journal is © The Royal Society of Chemistry 2007