Langmuir
Article
ellipsoidal micelles. These results are in agreement with those
obtained here, supporting the evidence that at concentrations
well above the cmc the micelles formed from amphiphilic
p-sulfonatocalixarenes adopt ellipsoidal geometries. We plan
to study this system in more detail using DOSY experiments
and a hydrophobic probe molecule, such hexamethyldisilane,39
in order to obtain detailed information about the structure of
these aggregates.
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
This work was supported by Ministerio de Ciencia y Tecnologia
(Project CTQ2008-04420/BQU) and Xunta de Galicia
(PGIDIT07-PXIB209041PR, PGIDIT10-PXIB209113PR, and
2007/085). N.B. acknowledges FCT for a Ph.D. Grant (SFRH/
BD/29218/2006).
CONCLUSIONS
■
Amphiphilic p-sulfonatocalix[n]arenes self-assembled into
globular micelles probably with ellipsoidal geometry as revealed
by DOSY experiments. The cmc of p-sulfonatocalix[4]arenes
derivatives blocked into the cone conformation decreases when
length of the alkyl chains is increased, due to stronger hydro-
phobic interactions, as generally observed for conventional sur-
factants. Analysis of the 1H NMR spectra of SC6HH, supported
by 2D NMR experiments indicates that, in the monomeric
state, SC6HH adopts an asymmetric pseudo-1,2,3-alternate
conformation with a self-included alkyl chain. Since for this
calixarene the aromatic units can undergo “through the annulus”
rotation, it is likely that this conformation is stabilized by hydro-
phobic interactions between the alkyl chains. On the other hand,
the higher flexible calix[8]arene derivative (SC8OH) is confor-
mationaly mobile and exchange rapidly, on the NMR time scale,
between several possible conformation. However, in the micellized
state both SC6HH and SC8OH adopt the cone conformation.
This aggregation induced conformational change is expected due
to the globular structure of the micelles. This geometry favors
the cone conformation where all alkyl chains are directed in-
ward and the hydrophilic sulfonate groups are in contact with
the bulk aqueous solution.
For p-sulfonatocalixarenes bearing hexyl chains at the lower
rim, the cmc (in moles of alkyl chain units) increases when
the number of aromatic units in the macrocycle increases. This
behavior is unexpected and can be explained taking into account
the conformations adopted by these amphiphilic molecules.
SC4TH shows a higher tendency to micellize since it is pre-
organized in the cone conformation, and thus there are no con-
formational changes (and thus energetic costs associated with
it) when the monomers are transferred from the bulk aqueous
phase to the micelle. SC6HH and SC8OH change their confor-
mation when they are transferred from the monomeric to the
micellized state, and this presents an extra energetic cost that
results in a relative destabilization of the micelles and cmc in-
crease. When the aggregation tendency of SC6HH is compared
with that of SC8OH, the last is disfavored, probably, due to a
decrease in degrees of freedom, since SC8OH changes from
his highly flexible monomeric state to a micellar environment
where the molecule is conformationally constrained into the
cone conformation.
REFERENCES
■
(1) Calixarenes; Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J.,
̈
Eds.; Kluwer Academic Publishers: Dordrecht, 2001.
(2) Mulder, A.; Auletta, T.; Sartori, A.; Del Ciotto, S.; Casnati, A.;
Ungaro, R.; Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. 2004, 126,
6627−6636.
(3) Arduini, A.; Demuru, D.; Pochini, A.; Secchi, A. Chem. Commun.
2005, 645−647.
(4) Arduini, A.; Ciesa, F.; Fragassi, M.; Pochini, A.; Secchi, A. Angew.
Chem., Int. Ed. 2005, 44, 278−281.
(5) Rudkevich, D. M. Bull. Chem. Soc. Jpn. 2002, 75, 393−413.
(6) Helttunena, K.; Shahgaldian, P. New J. Chem. 2010, 34, 2704−
2714.
(7) Shinkai, S.; Mori, S.; Koreishi, H.; Tsubaki, T.; Manabe, O. J. Am.
Chem. Soc. 1986, 108, 2409−2416.
(8) Shinkai, S.; Kawabata, H.; Arimura, T.; Matsuda, T.; Satoh, H.;
Manabe, O. J. Chem. Soc., Perkin Trans. 1 1989, 1073−1074.
(9) Shinkai, S.; Arimura, T.; Araki, K.; Kawabata, H.; Satoh, H.;
Tsubaki, T.; Manabe, O.; Sunamoto, J. J. Chem. Soc., Perkin Trans. 1
1989, 2039−2045.
(10) Arimori, S.; Nagasaki, T.; Shinkai, S. J. Chem. Soc., Perkin Trans.
2 1995, 679−683.
(11) Strobel, M.; Kita-Tokarczyk, K.; Taubert, A.; Vebert, C.; Heiney,
P. A.; Chami, M.; Meier, W. Adv. Funct. Mater. 2006, 16, 252−259.
(12) Kellermann, M.; Bauer, W.; Hirsch, A.; Schade, B.; Ludwig, K.;
Bottcher, C. Angew. Chem., Int. Ed. 2004, 43, 2959−2962.
(13) Lee, M.; Lee, S. J.; Jiang, L. H. J. Am. Chem. Soc. 2004, 126,
12724−12725.
(14) Sansone, F.; Dudic, M.; Donofrio, G.; Rivelli, C.; Baldini, L.;
Casnati, A.; Cellai, S.; Ungaro, R. J. Am. Chem. Soc. 2006, 128, 14528−
14536.
(15) Consoli, G. M. L.; Granata, G.; Lo Nigro, R.; Malandrino, G.;
Geraci, C. Langmuir 2008, 24, 6194−6200.
(16) Micali, N.; Villari, V.; Consoli, G. M. L.; Cunsolo, F.; Geraci, C.
Phys. Rev. E 2006, 73, 0519041−0519048.
(17) Basílio, N.; García-Río, L.; Martín-Pastor, M. J. Phys. Chem. B
2010, 114, 4816−4820.
(18) Matsuoka, H.; Tsurumi, M.; Ise, N. Phys. Rev. B 1988, 38,
6279−6286.
(19) Wu, D.; Chen, A.; Johnson, C. S. J. Magn. Reson. 1995, 115,
260−264.
(20) Pedretti, A.; Villa, L.; Vistoli, G. J. Comput.-Aided Mol. Des. 2004,
18, 167−173.
(21) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput.
Chem. 2005, 26, 1781−1802.
ASSOCIATED CONTENT
■
(22) Zana, R. J. Colloid Interface Sci. 1980, 78, 330−337.
(23) Zana, R.; Benrraou, M.; Rueff, R. Langmuir 1991, 7, 1072−1075.
(24) Mukerjee, P. Adv. Colloid Interface Sci. 1967, 1, 241−275.
(25) Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; John
Wiley & Sons: Hoboken, NJ, 2004.
S
* Supporting Information
Characterization data, typical electrical conductivity against
surfactant concentration plot, graphs of the cmc plotted against
the alkyl chain length and the number of phenolic units, NMR
spectra, plot of the chemical shifts against surfactant concen-
tration, energy-minimized molecular models of SC6HH, and a
typical echo attenuation plot. This material is available free of
(26) Laschewsky, A.; Wattebled, L.; Arotcarena, M.; Habib-Jiwan, J.;
Rakotoaly, R. V. Langmuir 2005, 21, 7170−7179 and referencestherein.
(27) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713−1734.
(28) Quirion, F.; Magid, L. J. J. Phys. Chem. 1986, 90, 5435−5441.
(29) Chang, N. J.; Kaler, E. W. J. Phys. Chem. 1985, 89, 2996−3000.
2413
dx.doi.org/10.1021/la204004h | Langmuir 2012, 28, 2404−2414