Organic Letters
Experimental procedures and characterization data for all
Letter
(12) The optimal amount of 3 Å molecular sieves appears to be about
20 mg for 1 mmol of styrene where the phenylketimine product 2a
was obtained in 70% yield (8 mg/mmol; 52% and 32 mg/mmol;
68%).
AUTHOR INFORMATION
(13) The optimized reaction conditions are run in neat without
solvent; however, the presence of toluene or o-xylene in the same
amount as styrene (i.e., 20 equiv) did not influence the reaction
outcome (neat, 70%; in toluene, 68%; in o-xylene, 62%).
(14) Upon use of 4 Å MS, the phenylketimine product 2a was
obtained in 18% yield. While the precise reason for the low catalytic
activity in the presence of 4 Å MS is not clear, the sequestration of
palladium catalysts is possible through the absorption of palladium
species to the surface of 4 Å MS. For the formation of 4 Å MS-
supported Pd(II) catalysts, see: Dey, R.; Sreedhar, B.; Ranu, B. C.
Tetrahedron 2010, 66, 2301−2305.
(15) The use of alternative oxidants such as oxone, p-benzoquinone,
and PhI(OAc)2 was not successful under argon atmosphere.
(16) An aqueous workup of the reaction provided the desired
acetophenone products without loss of yields, thus providing the
formal Wacker oxidation products.
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the National Research
Foundation of Korea (NRF) grants funded by the Korean
government (MSIP) (NRF-2015R1A5A1008958 and NRF-
2015R1C1A2A01053504).
(17) The possibility of H-bonding between Pd-bound aniline and
acetate as a driving force to form the complex C from B was
eliminated from our kinetic isotope effect experiments, where we
found no isotope effect at the beginning of the reaction.
(18) Phenylketimine should be the thermodynamic product based on
the ketimine−enamine tautomerization as found in the keto−enol
tautomerization.
(19) Popp, B. V.; Stahl, S. S. Chem. - Eur. J. 2009, 15, 2915−2922.
(20) The ratio between vinylarene and Pd(OAc)2 under our
optimized conditions is 400:1, except for 2-vinylnaphthalene (100:1).
(21) The presence of pyridine additive helps the stability of
palladium catalyst, making them less susceptible to decomposition to
palladium(0) black. For the effect of pyridine in the intramolecular
aerobic oxidative amination, see: Ye, X.; Liu, G.; Popp, B. V.; Stahl, S.
S. J. Org. Chem. 2011, 76, 1031−1044.
(22) We did not observe the rate acceleration and the increase in the
catalyst stability in the presence of 3 Å MS. The use of 3 Å MS without
pyridine additive led to 27% yield of phenylketimine 2a. For the
beneficial effect of 3 Å MS in terms of catalyst stability and rate
enhancement, see: Steinhoff, B. A.; King, A. E.; Stahl, S. S. J. Org.
Chem. 2006, 71, 1861−1868.
(23) The KIE of 1.6 might be relevant to the different kinetic orders
in substrates. For a discussion on either first or saturation dependence
on [substrate] in the aerobic oxidative amination of styrene, see:
Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46,
1910−1923.
(24) Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124,
1166−1167.
(25) The insertion of dioxygen into a palladium(II) hydride followed
by reductive water removal cannot be ruled out. For the first
crystallographic evidence for such a process, see: Denney, M. C.;
Smythe, N. A.; Cetto, K. L.; Kemp, R. A.; Goldberg, K. I. J. Am. Chem.
Soc. 2006, 128, 2508−2509.
(26) Because aliphatic alkenes are inert under our optimized
conditions, the steric requirement of Pd−anilide complex C to Pd−
alkyl complexes D/D′ using bulky alkene ligands is currently assessed
in order to induce the anti-Markovnikov reaction pathway.
REFERENCES
■
(1) For general reviews, see: (a) Taube, R. In Applied Homogeneous
Catalysis, 1st ed.; Cornils, B., Herrmann, W. A., Eds.; Wiley-VCH:
Weinheim, 1996; Vol. 1, pp 507−526. (b) Muller, T. E.; Beller, M. In
̈
Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.;
Wiley-VCH: Weinheim, 1998; Vol. 2, pp 316−330. (c) Brunet, J. J.;
Neibecker, D. In Catalytic Heterofunctionalization from Hydroamination
to Hydrozirconation; Togni, A., Grutzmacher, H., Eds.; Wiley-VCH:
Weinheim, 2001; pp 91−141.
(2) For reviews, see: (a) Muller, T. E.; Beller, M. Chem. Rev. 1998,
̈
̈
98, 675−704. (b) Nobis, M.; Drießen-Holscher, B. Angew. Chem., Int.
̈
Ed. 2001, 40, 3983−3985. (c) Seayad, J.; Tillack, A.; Hartung, C. G.;
Beller, M. Adv. Synth. Catal. 2002, 344, 795−813. (d) Roesky, P. W.;
Muller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708−2710. (e) Hong,
̈
S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673−686. (f) Hultzsch, K. C.
Adv. Synth. Catal. 2005, 347, 367−391. (g) Muller, T. E.; Hultzsch, K.
̈
C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795−3892.
(h) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem.
Rev. 2015, 115, 2596−2697. (i) Margrey, K. A.; Nicewicz, D. Acc.
Chem. Res. 2016, 49, 1997−2006. (j) Patel, M.; Saunthwal, R. K.;
Verma, A. K. Acc. Chem. Res. 2017, 50, 240−254.
(3) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546−
9547.
(4) Horrillo-Martínez, P.; Hultzsch, K. C.; Gil, A.; Branchadell, V.
Eur. J. Org. Chem. 2007, 2007, 3311−3325.
(5) Jaspers, D.; Doye, S. Synlett 2011, 1444−1448.
(6) Brunet, J.-J.; Neibecker, D.; Philippot, K. Tetrahedron Lett. 1993,
34, 3877−3880.
(7) (a) Beller, M.; Thiel, O. R.; Trauthwein, H.; Hartung, C. G.
Chem. - Eur. J. 2000, 6, 2513−2522 For the Rh(I)-catalyzed anti-
Markovnikov products using secondary amines, see:. (b) Beller, M.;
Eichberger, M.; Trauthwein, H. Angew. Chem., Int. Ed. Engl. 1997, 36,
2225−2227.
(8) (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc.
2003, 125, 12996−12997. (b) Timokhin, V. I.; Stahl, S. S. J. Am. Chem.
Soc. 2005, 127, 17888−17893 For a review of the Pd-catalyzed
oxidation reactions, see:. (c) Stahl, S. S. Angew. Chem., Int. Ed. 2004,
43, 3400−3420.
(9) For a review, see: Keith, J. A.; Henry, P. M. Angew. Chem., Int. Ed.
2009, 48, 9038−9049.
(10) For the initial evaluations of key experimental parameters, see
(11) The use of other pyridine derivatives provided the formation of
phenylketimine product 2a in about 30% yields; however the
employment of stronger bases such as Et3N, K2CO3, and KOH
significantly reduced the observed yields to about 5%. For example, the
employment of lithium anilide resulted in 8% yield of phenylketimine
2a.
D
Org. Lett. XXXX, XXX, XXX−XXX