Communication
ChemComm
11 (a) B. R. Bohman, L. Jeffares, G. Flematti, L. T. Byrne, B. W. Skelton,
R. D. Phillips, K. W. Dixon, R. Peakall and R. A. Barrow, J. Nat. Prod.,
2012, 75, 1589–1594; (b) B. R. Bohman, L. Jeffares, G. Flematti,
R. D. Phillips, K. W. Dixon, R. Peakall and R. A. Barrow, Org. Lett.,
2012, 14, 2576–2578.
12 L. You, E. J. Cho, J. Leavitt, L.-C. Ma, G. T. Montelione, E. V. Anslyn,
R. M. Krug, A. Ellington and J. D. Robertus, Bioorg. Med. Chem. Lett.,
2011, 21, 3007–3011.
13 L. E. Seitz, W. J. Suling and R. C. Reynolds, J. Med. Chem., 2002, 45,
5604–5606.
14 S. T. Hazeldine, L. Polin, J. Kushner, J. Paluch, K. White, M. Edelstein,
E. Palomino, T. H. Corbett and J. P. Horwitz, J. Med. Chem., 2001, 44,
1758–1776.
the synthesis of pyrazine natural product botryllazine-A starting
from 4m will be reported in due course.
Prathap Reddy, Durga Rao and Ravi thank CSIR for the
fellowships. Satyanarayana thanks UGC for fellowship. Finan-
cial support from CSIR network project ‘ORIGIN’ (CSC-0108) is
acknowledged. We thank Dr Tejender S. Thakur of Molecular
and Structural Biology Division, CSIR-Central Drug Research
Institute for supervising the X-ray Data collection and structure
determination of our compounds reported in this paper.
15 A. Abu-Hashem, M. Gouda and F. Badria, Eur. J. Med. Chem., 2010,
45, 1976–1981.
16 S. Dailey, W. J. Feast, R. J. Peace, I. C. Sage, S. Till and E. L. Wood,
J. Mater. Chem., 2001, 11, 2238–2243.
Notes and references
1 (a) L. F. Tietze, G. Brasche and K. Gericke, Domino Reactions
in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2014; 17 J. L. Sessler, H. Maeda, T. Mizuno, V. M. Lynch and H. Furuta, J. Am.
(b) H. Pellissier, Chem. Rev., 2012, 113, 442–524; (c) L. F. Tietze, Chem. Soc., 2002, 124, 13474–13479.
T. Kinzel and C. C. Brazel, Acc. Chem. Res., 2009, 42, 367–378; 18 (a) J. Emmerich, Q. Hu, N. Hanke and R. W. Hartmann, J. Med.
(d) L. F. Tietze and N. Rackelmann, Pure Appl. Chem., 2004, 76,
Chem., 2013, 56, 6022–6032; (b) A. Ohta, A. Imazeki, Y. Itoigawa,
H. Yamada, C. Suga, C. Takagai, H. Sano and T. Watanabe, J. Heterocycl.
Chem., 1983, 20, 311–320.
´
1967–1983; (e) J. Poulin, C. M. Grise-Bard and L. Barriault, Chem.
Soc. Rev., 2009, 38, 3092–3101; ( f ) L. J. Sebren, J. J. Devery III and
C. R. Stephenson, ACS Catal., 2014, 4, 703–716; (g) M. Horvat, 19 (a) V. Kunkuma, L. A. P. D. Bethala, Y. Bhongiri, B. N. P. Rachapudi
¨
H. Gorner, K.-D. Warzecha, J. R. Neudorfl, A. G. Griesbeck, K. Mlinaric-
and S. S. P. Potharaju, Eur. J. Chem., 2011, 2, 495–498; (b) H. K.
Kadam, S. Khan, R. A. Kunkalkar and S. G. Tilve, Tetrahedron Lett.,
2013, 54, 1003–1007.
Majerski and N. Basaric, J. Org. Chem., 2009, 74, 8219–8231;
(h) D.-C. Wang, H.-Y. Niu, M.-S. Xie, G.-R. Qu, H.-X. Wang and
H.-M. Guo, Org. Lett., 2013, 16, 262–265.
20 (a) D. F. Taber, P. W. DeMatteo and K. V. Taluskie, J. Org. Chem.,
´
2007, 72, 1492–1494; (b) A. Vidal-Albalat, S. Rodrıguez and
2 (a) M. Gao, Y. Yang, Y.-D. Wu, C. Deng, W.-M. Shu, D.-X. Zhang,
L.-P. Cao, N.-F. She and A.-X. Wu, Org. Lett., 2010, 12, 4026–4029;
´
F. V. Gonzalez, Org. Lett., 2014, 16, 1752–1755.
˜
(b) Y. Yamamoto, H. Hayashi, T. Saigoku and H. Nishiyama, J. Am. 21 (a) S. Antoniotti and E. Dunach, Tetrahedron Lett., 2002, 43,
´
´
Chem. Soc., 2005, 127, 10804–10805; (c) P. J. Alaimo, R. O’Brien III,
3971–3973; (b) A. Vidal-Albalat, S. Rodrıguez and F. V. Gonzalez,
Org. Lett., 2014, 16, 1752–1755.
A. W. Johnson, S. R. Slauson, J. M. O’Brien, E. L. Tyson, A.-L.
Marshall, C. E. Ottinger, J. G. Chacon and L. Wallace, Org. Lett., 22 (a) S. A. Raw, C. D. Wilfred and R. J. Taylor, Chem. Commun., 2003,
2008, 10, 5111–5114.
3 (a) W.-J. Xue, Y.-Q. Guo, F.-F. Gao, H.-Z. Li and A.-X. Wu, Org. Lett.,
2286–2287; (b) S. A. Raw, C. D. Wilfred and R. J. Taylor, Org. Biomol.
Chem., 2004, 2, 788–796.
2013, 15, 890–893; (b) Y.-P. Zhu, F.-C. Jia, M.-C. Liu and A.-X. Wu, 23 (a) R. S. Robinson and R. J. Taylor, Synlett, 2005, 1003–1005; (b) S. A. Raw,
Org. Lett., 2012, 14, 4414–4417; (c) Y.-P. Zhu, M. Lian, F.-C. Jia, C. D. Wilfred and R. J. Taylor, Chem. Commun., 2003, 2286–2287.
M.-C. Liu, J.-J. Yuan, Q.-H. Gao and A.-X. Wu, Chem. Commun., 2012, 24 (a) T. A. Elmaaty and L. W. Castle, Org. Lett., 2005, 7, 5529–5530;
48, 9086–9088; (d) Y.-P. Zhu, Q.-H. Gao, M. Lian, J.-J. Yuan,
M.-C. Liu, Q. Zhao, Y. Yang and A.-X. Wu, Chem. Commun., 2011,
47, 12700–12702.
4 (a) L. E. Seitz, W. J. Suling and R. C. Reynolds, J. Med. Chem., 2002,
45, 5604–5606; (b) F. Palacios, A. M. Ochoa de Retana, J. I. Gil and
R. Lopez de Munain, Org. Lett., 2002, 4, 2405–2408.
(b) P. P. Singh, S. K. Aithagani, M. Yadav, V. P. Singh and R. A.
Vishwakarma, J. Org. Chem., 2013, 78, 2639–2648.
25 (a) B. C. Raju, K. V. Prasad, G. Saidachary and B. Sridhar, Org. Lett.,
2014, 16, 420–423; (b) Y.-H. Cho, K.-H. Kim and C.-H. Cheon, J. Org.
Chem., 2014, 79, 901–907; (c) C. F. Gers, J. Nordmann, C. Kumru,
W. Frank and T. J. Mu¨ller, J. Org. Chem., 2014, 79, 3296–3310.
5 (a) A. Jaso, B. Zarranz, I. Aldana and A. Monge, J. Med. Chem., 2005, 26 (a) W. Wang, Y. Shen, X. Meng, M. Zhao, Y. Chen and B. Chen, Org.
48, 2019–2025; (b) M. Sato, T. Nakazawa, Y. Tsunematsu, K. Hotta
and K. Watanabe, Curr. Opin. Chem. Biol., 2013, 17, 537–545.
6 M. Dolezal, M. Miletin, J. Kunes and K. Kralova, Molecules, 2002, 7,
363–373.
7 M. H. Gezginci, A. R. Martin and S. G. Franzblau, J. Med. Chem.,
2001, 44, 1560–1563.
Lett., 2011, 13, 4514–4517; (b) S. Shi, T. Wang, W. Yang, M. Rudolph and
A. S. K. Hashmi, Chem. – Eur. J., 2013, 19, 6576–6580; (c) S. Okumura,
Y. Takeda, K. Kiyokawa and S. Minakata, Chem. Commun., 2013, 49,
9266–9268; (d) M. Rudolph and A. S. K. Hashmi, Chem. Commun., 2011,
47, 6536–6544; (e) A. Hashmi and M. Buehrle, Aldrichimica Acta, 2010,
43, 27–33.
´
´
8 M. Doleˇzal and K. Kral’ova, Herbicides, Theory and Applications, 2011, 27 To gain an insight into the mechanism of the iodine mediated pyrazines
pp. 581–610.
and quinoxalines synthesis via MPCD strategy, the following control
experiment was performed. Intermediate ‘A’ was obtained in 82% yield
via reaction of 1a with I2 (2.0 mmol) in DMSO, open air conditions in the
absence of 1,2-diaminoethane where the reaction is slow enough to
allow its isolation. Subsequent conversion of phenacyl iodide (A) into
phenylglyoxal (B) in DMSO was well proved by Wu et al.3b
9 A. R. Katritzky, C. W. Rees and K. T. Potts, Comprehensive heterocyclic
chemistry: the structure, reactions, synthesis and uses of heterocyclic
compounds, Pergamon Press, Oxford UK, 1984.
10 G. Buchbauer, C. T. Klein, B. Wailzer and P. Wolschann, J. Agric.
Food Chem., 2000, 48, 4273–4278.
13520 | Chem. Commun., 2014, 50, 13517--13520
This journal is ©The Royal Society of Chemistry 2014