photolysis to dihydroxypyrenes (which can air oxidize to
diones) and other oxidation products of pyrene. Scheme 1
depicts a plausible mechanism for the formation of products
upon photolysis of pyrene on silica.
In summary, our photochemical studies of pyrene on
unactivated and activated silica have revealed that (a)
photodegradation proceeds efficiently at low surface cover-
ages to give mainly 1,6- and 1,8-pyrenediones, small amounts
of 1-hydroxypyrene, and some other oxidation products, (b)
photodegradation rate drops significantly at higher surface
coverages as a result of ground-state pair and/ or aggregation
believed to be responsible for the observed formation of
1,1′-bipyrene dimer, (c) photooxidation of pyrene proceeds
predominantly by type I (electron transfer) mechanism and
does not involve singlet molecular oxygen (type II) as an
intermediate, and (d) photodegradation rate drops in the
presence of physisorbed water.
Acknowledgments
This research was sponsored by EPA-U.S.A., Grant R-8233-
28-01, U.S. DOE/ EPSCoR Grant DE-FGO2-94ER-75764 to the
University of Puerto Rico and by the Division of Chemical
Sciences, Office of Basic Energy Sciences, U.S. Department
of Energy under contract DE-AC05-96OR22464 with Oak
Ridge National Laboratory, managed by Lockheed Martin
Energy Research Corp.
Literature Cited
(1) Pitts, J. N.; Pour, H. R.; Zelinska, B.; Arey, J.; Winer, A. M.;
Ramdahl, T.; Mejia, V. Chemosphere 1986, 15, 675.
(2) Finlayson, B. J.; Pitts, J. N. In Atmospheric Chemistry, Funda-
mentals and Experimental Techniques; Wiley: New York, 1986.
(3) Warshawsky, D.; Barkley, W.; Bingham, E. Fundam. Appl. Toxicol.
1993, 20, 376.
FIGURE 6. Transient diffuse reflectance spectra of pyrene adsorbed
on unactivated silica under an atmosphere of air (a) and nitrogen
(b) recorded 9.6 us after the laser pulse.
To determine whether singlet molecular oxygen played
a role in photodegradation of pyrene by a type II mechanism,
a methylene blue sensitized reaction of pyrene adsorbed on
silica was carried out. No oxidation product(s) of pyrene or
any significant loss of pyrene was observed when methylene
blue (a sensitizer of singlet oxygen) coadsorbed with pyrene
on silica was excited (650 nm) directly for days. Based on
these findings, photodegradation of pyrene appears to
proceed exclusively by a type I mechanism, and significant
involvement of singlet oxygen can be ruled out.
(4) Bocedas, L.; Roment, L.; Toff, E.; Jenssen, D.; De Pierre, J. W.;
Albert, M. B. Reprod. Toxicol. 1993, 7, 219.
(5) Van Houdt, J. J. Atmospher. Environ. 1990, 240, 207.
(6) Report No. EPA-440/ 4-79-029; Callahan, M. A.; Slimak, M. W.;
Gabelc, N. W.; May, I. P.; Fowler, C. F.; Freed, J. R.; Jennings,
P.; Durfee, R. L.; Whitmore, C. F.; Maestri, B.; Mabey, W. R.;
Holt, B. R.; Gould, C. U.S. Environmental Protection Agency,
U.S. Government Printing Office: Washington, DC, 1979.
(7) Xu, M.; Hites, R. A. Anal. Chem. 1981, 53, 951.
(8) Paoletti, L.; Falchi, M.; Viviano, G.; Ziemachi, G.; Batisi, D.; Pisani,
D. Water, Air, Soil. Pollut. 1989, 43, 85.
(9) Behymer, T. D.; Hites, R. A. Environ. Sci. Technol. 1985, 19,
1004.
(10) Yamasaki, H.; Kuwata, K.; Miyamoto, H. Environ. Sci. Technol.
1982, 16, 189.
(11) Guillard, C.; Delprat, H.; Hoang-van, C.; Pichat, P. J. Atmos.
Chem. 1993, 126, 47.
(12) Korfmacher, W. A.; Wehry, E. L.; Mamantov, G.; Natusch, D. F.
S. Environ. Sci. Technol. 1980, 14, 1094.
(13) Yokley, R. A.; Garrison, A. A.; Wehry, E. L.; Mamantov, G. Environ.
Sci. Technol. 1986, 20, 86.
(14) Behymer, T. D.; Hites, R. A. Environ. Sci. Technol. 1988, 22,
1311.
(15) Dunstan, T. D. J.; Mauldin, R. F.; Jinxian, Z.; Hipps, A. D.; Wehry,
E. L.; Mamantov, G. Environ. Sci. Technol. 1989, 23, 303.
(16) Fatiadi, A. J. Environ. Sci. Technol. 1967, 7, 570.
(17) Bauer, R. K.; de Mayo, P. J. Phys. Chem. 1982, 86, 3781.
(18) Bauer, R. K.; Borenstein, R.; de Mayo, P.; Okada, K.; Rafalska,
M.; Ware, W. R.; Wu, K. C. J. J. Am. Chem. Soc. 1982, 104, 4335.
(19) Frederick, B.; Johnson, L. J.; de Mayo, P.; Wong, S. K. Can. J.
Chem. 1984, 61, 403.
(20) Bauer, R. K.; de Mayo, P.; Natarajan, L. V.; Ware, W. R. Can. J.
Chem. 1984, 62, 1279.
(21) de Mayo, P.; Natarajan, L. V.; Ware, W. R. Chem. Phys. Lett.
1984, 107, 187.
(22) de Mayo, P.; Natarajan, L. V.; Ware, W. R. In Organic Pho-
totransformation in Nonhomogeneous Media; Fox, M. A., Ed.;
American Chemical Society: Washington, DC, 1985; pp 1-19.
(23) James, D. R.; Liu, Y. S.; de Mayo, P.; Ware, W. R. Chem. Phys.
Lett. 1985, 120, 460.
(24) James, D. R.; Ware, W. R. Chem. Phys. Lett. 1985, 120, 450.
(25) Kessler, R. W.; Wilkinson, F. J. J. Chem. Soc., Faraday Trans. 1
1981, 77, 309.
Excited-State Transients of Pyrene on Unactivated Silica.
The 266 nm laser excitation of pyrene adsorbed on unac-
tivated air saturated silica gel produces the radical cation
and excited triplet transients (Figure 6). Similar bands have
been observed using an excimer laser to excite pyrene
adsorbed on activated alumina (26-28). The reported spectra
are similar to the published absorption spectra of pyrene’s
triplet state (51) and the radical cation in solution (52).
Oxygen quenches excited singlet (26, 53) and triplet states
and not the radical cation of pyrene on activated and
unactivated silica surfaces (27). In polar solvents, energy
transfer from the excited triplet state of pyrene to molecular
oxygen leads to the formation of singlet molecular oxygen
with a quantum efficiency of 0.65-0.74 (54). It has also been
proposed that adsorbed oxygen serves as an electron trap
•-
forming superoxide radical anion, O2 (29, 53). Although
mononphotonic and biphotonic processes have been pos-
tulated for the photoionization of pyrene on solid surfaces
(27), the low photon flux used in our studies rule out the
involvement of a biphotonic process in the formation of
cation radical.
Mechanism of Pyrene Photolysis. Pyrene radical cation
can form either by energy transfer from excited pyrene to
molecular oxygen or by photoionization of adsorbed pyrene.
The reaction of radical cation with physisorbed water on
silica surface can lead to the formation of 1-hydroxypyrene.
It is postulated that 1-hydroxypyrene can undergo secondary
9
4 2 0 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 34, NO. 3, 2000