Communication
ChemComm
proper acid–base balance is highly important for the successful
spiro-cyclization. The acid should be sufficiently strong for
initial activation of nitro-group in 3, but at the same time it
should be weak enough so it’s conjugate base would be able to
deprotonate species 12.
6 C.-H. Chen, Q.-Q. Liu, X.-P. Ma, Y. Feng, C. Liang, C.-X. Pan, G.-F. Su
and D.-L. Mo, J. Org. Chem., 2017, 82, 6417–6425.
7
(a) A. V. Aksenov, A. N. Smirnov, N. A. Aksenov, I. V. Aksenova,
L. V. Frolova, A. Kornienko, I. V. Magedov and M. Rubin, Chem.
Commun., 2013, 49, 9305–9307; (b) A. V. Aksenov, A. N. Smirnov,
N. A. Aksenov, I. V. Aksenova, A. S. Bijieva and M. Rubin, Org.
Biomol. Chem., 2014, 12, 9786–9788; (c) A. V. Aksenov, A. N. Smirnov,
N. A. Aksenov, I. V. Aksenova, J. P. Matheny and M. Rubin, RSC Adv.,
2015, 5, 8647–8656.
In conclusion, nitroalkenes were successfully employed as
synthetic equivalents of 1,4-dipoles of CCNO-type in a highly
diastereoselective formal (4+1)-cycloaddition reaction of indoles in
8
9
(a) N. A. Aksenov, A. V. Aksenov, O. N. Nadein, D. A. Aksenov,
A. N. Smirnov and M. Rubin, RSC Adv., 2015, 5, 71620–71626;
0
0
phosphorous acid to afford 4 H-spiro[indole-3,5 -isoxazole] deriva-
tives 2. Work for biological evaluation of spiro-heterocyclic systems 2
and synthetic application of these novel scaffolds is currently under-
way in our laboratories.
(
b) A. V. Aksenov, A. N. Smirnov, N. A. Aksenov, A. S. Bijieva,
I. V. Aksenova and M. Rubin, Org. Biomol. Chem., 2015, 13,
289–4295.
4
A. V. Aksenov, A. N. Smirnov, I. V. Magedov, M. R. Reisenauer,
N. A. Aksenov, I. V. Aksenova, A. L. Pendleton, G. Nguyen,
R. K. Johnston, M. Rubin, A. De Carvalho, R. Kiss, V. Mathieu,
F. Lefranc, J. Correa, D. A. Cavazos, A. J. Brenner, B. Bryan, S. Rogelj,
A. Kornienko and L. V. Frolova, J. Med. Chem., 2015, 58, 2206–2220.
Financial support from Russian Science Foundation (Grant
#18-13-00238) is gratefully acknowledged.
1
1
0 Acronym ANRORC stands for Addition of Nucleophile-Ring
Opening-Ring Closure cascade mechanism, see for example:
I. S. Young, ANRORC Mechanism in Name Reactions in Heterocyclic
Chemistry II, ed. J. J. Li, Wiley, 2011, pp. 516–526.
1 (a) A. V. Aksenov, N. A. Aksenov, Z. V. Dzhandigova, D. A. Aksenov
and M. Rubin, RSC Adv., 2015, 5, 106492–106497; (b) A. V.
Aksenov, N. A. Aksenov, Z. V. Dzhandigova, I. V. Aksenova, L. G.
Voskressensky, A. N. Smirnov and M. Rubin, Chem. Heterocycl.
Compd., 2016, 52, 299–302.
Conflicts of interest
There are no conflicts to declare.
References
1
For review, see: Y. Zheng, C. M. Tice and S. B. Singh, Bioorg. Med.
Chem. Lett., 2014, 24, 3673–3682.
12 A. V. Aksenov, N. A. Aksenov, Z. V. Dzhandigova, D. A. Aksenov,
L. G. Voskressensky, V. G. Nenajdenko and M. Rubin, RSC Adv.,
2016, 6, 93881–93886.
2
See, for example: (a) C. J. A. Ribeiro, J. D. Amaral, C. M. P. Rodrigues,
R. Moreira and M. M. M. Santos, Bioorg. Med. Chem., 2014, 22, 577–584;
(
b) A. V. Velikorodov, V. A. Ionova, O. V. Degtyarev and L. T. Sukhenko, 13 We recognize that 5-endo-trig cyclizations are stereoelectronically
Pharm. Chem. J., 2013, 46, 715–719; (c) H. M. Refat, J. Heterocycl. Chem.,
unfavourable according to the Baldwine rules, see for example:
(a) K. Gilmore, R. K. Mohamed and I. V. Alabugin, Wiley Interdiscip.
Rev.: Comput. Mol. Sci., 2016, 6, 487–514. This, however, might be a
an electrocyclic ring closure, stereoelectronic requirements for
which are conceptually different. As suggested by a reviewer, this
step could involve a non-concerted process, that can be character-
ized as aborted pericyclic reaction. See, for example: (b) K. Gilmore,
M. Manoharan, J. I. Chia Wu, P. V. R. Schleyer and I. V. Alabugin,
J. Am. Chem. Soc., 2012, 134, 10584–10594.
2
015, 52, 1488–1495; (d) A. A. El-Gendy and A. M. Ahmedy, Arch.
Pharmacal Res., 2000, 23, 310–314; (e) M. S. K. Youssef and A. A. O.
Abeed, Heterocycl. Commun., 2014, 20, 25–31.
3
4
(a) A. Singh and G. P. Roth, Org. Lett., 2011, 13, 2118–2121;
(
b) A. Singh and G. P. Roth, Tetrahedron Lett., 2012, 53, 4889–4891.
See, for example: (a) I. A. Khan, V. M. Balaramnavar and A. K. Saxena,
Tetrahedron, 2012, 68, 10122–10129; (b) A. Dandia, R. Singh, G. Kumar,
K. Arya and H. Sachdeva, Heterocycl. Commun., 2001, 7, 571–576.
5
(a) F. Risitano, G. Grassi, F. Foti, G. Bruno and A. Rotondo, Hetero- 14 Theoretical modelling of 2aa and 17 structure was performed in
cycles, 2003, 60, 857–863; (b) C. J. A. Ribeiro, S. Praveen Kumar,
R. Moreira and M. M. M. Santos, Tetrahedron Lett., 2012, 53, 281–284;
(
Spartan 10 suite (Wavefunction Inc.) employing B3LYP functional
with 6-311++G** basis set. See ESI† for details.
1
c) A. V. Velikorodov, O. Yu. Poddubnyi, A. K. Kuanchalieva and 15 Both H NMR and GC analyses of crude reaction mixtures show
O. O. Krivosheev, Russ. J. Org. Chem., 2010, 46, 1826–1829.
formation of diastereomers 2 only. Epimers 17 were never detected.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 13260--13263 | 13263