ORGANIC
LETTERS
2
005
Vol. 7, No. 8
537-1539
Rhodium-Catalyzed Reaction of Thiols
with Polychloroalkanes in the Presence
of Triethylamine
1
Ken Tanaka* and Kaori Ajiki
Department of Applied Chemistry, Graduate School of Engineering, Tokyo UniVersity
of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Received January 25, 2005
ABSTRACT
3 3
RhCl(PPh ) catalyzes a reaction of thiols with polychloroalkanes in the presence of triethylamine. This reaction serves as a convenient new
method to produce formaldehyde dithioacetals, ethylenedithioethers, thioformates, and dithiocarbonic esters under mild conditions.
Many methods for the synthesis of formaldehyde dithio-
acetals (RSCH SR) are known, including the reaction of
3
not. Recently, we reported a cationic rhodium(I)/PPh -
2
complex-catalyzed dehydrogenation of alkanethiols to di-
8
thiols with diiodomethane, dibromomethane, or dichloro-
sulfides under inert atmosphere. We found that the form-
1
methane under strongly basic conditions and the reaction
aldehyde dithioacetal was obtained along with the disulfide
of thiols with formaldehyde derivatives under acidic condi-
tions. Demonstrably, the simplest method yet reported is
the reaction of thiols with dichloromethane in the presence
2 2
through reaction of octanethiol with CH Cl when dehydro-
2
(
4) Reviews, see: (a) Ogawa, A. In Main Group Metals in Organic
Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004;
p 813. (b) Ali, B. E., Alper, H. In Handbook of Organopalladium Chemistry
for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York,
of strong organic base (1,8-diazabicyclo[5,4,0]undec-7-ene,
3
DBU), as reported by Ono et al. The present study explored
2002; Chapter VI.2.1.1.2. (c) Ogawa, A. In Handbook of Organopalladium
a rhodium-catalyzed reaction of thiols with polychloroalkanes
in the presence of weak organic base (Et N); the reaction
3
Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New
York, 2002; Chapter VII.6. (d) Kuniyasu, H. In Catalytic Heterofunction-
alization; Togni, A., Gr u¨ tzmacher, H., Eds.; Wiley-VCH: Weinheim, 2001;
p 217. (e) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8, 2660. (f)
Ogawa, A. J. Organomet. Chem. 2000, 611, 463. (g) Kondo, T.; Mitsudo,
T. Chem. ReV. 2000, 100, 3205. (h) Han, L.-B.; Tanaka, M. J. Chem. Soc.,
Chem. Commun. 1999, 395. (i) Beletskaya, I.; Moberg, C. Chem. ReV. 1999,
allows both simple operation and mild reaction conditions.
In general, thiols are believed to be poisons of transition
metal catalysts. However, several recent reports concerning
transition-metal-catalyzed reactions of thiols have explained
the utility of transition metal catalysts in synthesis of sulfur
9
9, 3435.
(5) For recent reports concerning transition-metal-catalyzed reactions of
thiols, see: (a) Kawakami, J.; Takeda, M.; Kamiya, I.; Sonoda, N. Ogawa,
A. Tetrahedron 2003, 59, 6559. (b) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao,
T. J. Am. Chem. Soc. 1999, 121, 5108. (c) Ohtaka, A.; Kuniyasu, H.;
Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 14324. (d)
Xiao, W.-J.; Alper, H. J. Org. Chem. 2001, 66, 6229. (e) Xiao, W.-J.;
Vasapollo, G.; Alper, H. J. Org. Chem. 2000, 65, 4138. (f) McDonald, F.
E.; Burova, S. A.; Huffman, L. G., Jr. Synthesis 2000, 7, 970. (g) Gabriele,
B.; Salerno, G.; Fazio, A. Org. Lett. 2000, 2, 351. (h) Ali, B. E.; Tijani, J.;
El-Ghanam, A.; Fettouhi, M. Tetrahedron Lett. 2001, 42, 1567. (i) Kondo,
T.; Kanda, Y.; Baba, A.; Fukuda, K.; Nakamura, A.; Wada, K.; Morisaki,
Y.; Mitsudo, T. J. Am. Chem. Soc. 2002, 124, 12960. (j) Inada, Y.
Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124,
15172. (k) Tsutsumi, K.; Fujimoto, K.; Yabukami, T.; Kawase, T.;
Morimoto, T.; Kakiuchi, K. Eur. J. Org. Chem. 2004, 504. (l) Kwong, F.
Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517. (m) Bates, C. G.; Gujadhur,
R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803 and references therein.
4
-6
compounds. Although platinum-catalyzed formaldehyde
dithioacetal formation using thiols and CH has been
reported, a catalytic method using thiols and CH Cl has
2 2
I
7
2
2
(
1) (a) Bertaina, B.; Rouvier, E.; Fayn, J.; Cambon, A. J. Fluorine Chem.
1
994, 66, 287. (b) Weissflog, E. Phosphorus Sulfur 1981, 12, 89. (c) Dou,
H. J. M.; Ludwikow, M.; Hassanaly, P.; Kister, J.; Metzger, J. J. Heterocycl.
Chem. 1980, 17, 393. (d) Feher, F.; Vogelbruch, K. Chem. Ber. 1958, 91,
9
96.
2) (a) Aggarwal, V. K.; Davies, I. W.; Franklin, R.; Maddock, J.; Mahon,
(
M. F.; Molloy, K. C. J. Chem. Soc., Perkin Trans. 1 1994, 17, 2363. (b)
Patney, H. K. Org. Prep. Proc. Int. 1994, 26, 377. (c) Kamada, T.; Gama,
Y.; Wasada, N. Bull. Chem. Soc. Jpn. 1989, 62, 3024.
(3) Ono, N.; Miyake, H.; Saito, T.; Kaji, A. Synthesis 1980, 11, 952.
1
0.1021/ol0501673 CCC: $30.25
© 2005 American Chemical Society
Published on Web 03/18/2005