236
Y. Li et al. / Chemical Physics Letters 421 (2006) 232–236
ethane at 266 nm using the one-photon laser-induced fluo-
[13] D.B. Moss, K.A. Trentelman, P.L. Houston, J. Chem. Phys. 96 (1992)
237.
00
rescence (LIF) technique,. The observed NO v = 0 state
fragment is vibrationally cold and the rotational distribu-
tion can be characterized by Boltzmann temperature of
[
[
[
14] N.C. Blais, J. Chem. Phys. 79 (1983) 1723.
15] J.C. Mialocq, J.C. Stephenson, Chem. Phys. 106 (1986) 281.
16] Y.L. Chow, in: S. Patai (Ed.), The Chemistry of Amino, Nitroso and
Nitrocompounds and their Derivatives, Suppl. F, Part 1, Wiley, New
York, 1982.
8
10 ± 100 K. Ab initio calculation results suggest that the
NO may be produced from a two-step process in the pho-
todissociation of nitroethane, in which the nitroethane is
first isomerized into ethyl nitrite followed by dissociation
of the ethyl nitrite. This is based on the prediction of a bar-
[
[
17] G.H. Penner, J. Mol. Struct. (Theochem) 137 (1986) 121.
18] K.Q. Lao, E. Jensen, P.W. Kash, L.J. Butler, J. Chem. Phys. 93
(
1990) 3958.
[19] W. Tsang, D. Robaugh, W.G. Mallard, J. Phys. Chem. 90 (1986)
ꢂ1
rier height of 68.4 kcal mol for isomerization of nitroe-
5968.
thane to ethyl nitrite.
[20] M.J.S. Dewar, J.P. Ritchie, J. Alster, J. Org. Chem. 50 (1985)
031.
1
[
[
[
21] B.H. Rockney, E.R. Grant, J. Chem. Phys. 79 (1983) 708.
22] G.N. Spokes, S.W. Benson, J. Am. Chem. Soc. 89 (1967) 6030.
23] M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899.
Acknowledgements
This work was supported by NKBRSF (Grant
999075302) and NSFC (Grants 20373071, 20333050).
[24] G.D. Greenblatt, H. Zuckerma, Y. Haas, Chem. Phys. Lett. 134
(1987) 593.
1
[25] S. Zabarnick, J.W. Fleming, A.P.J. Baronawski, Chem. Phys. 85
(
1986) 3395.
References
[
[
26] K.G. Spears, S.P. Brugge, Chem. Phys. Lett. 54 (1978) 373.
27] H.S. Kwok, G.Z. He, R.K. Sparks, Y.T. Lee, Int. J. Chem. Kinet. 13
(1981) 1125.
[
[
[
[
1] P. Asxon Roberta, M. Yoshimine, Can. J. Chem. 70 (1992) 572.
2] A.M. Wodtke, E.J. Hintsa, Y.T. Lee, J. Chem. Phys. 84 (1986) 1044.
3] A.M. Wodtke, E.J. Hintsa, Y.T. Lee, J. Phys. Chem. 90 (1986) 3549.
4] L.J. Butler, D. Krajnovich, Y.T. Lee, G. Ondrey, R. Bersohn, J.
Chem. Phys. 79 (1983) 1708.
[28] G. Radhakrishnan, T. Parr, C. Wittig, Chem. Phys. Lett. 111 (1984)
25.
[29] J.C. Mialocq, J.C. Stephenson, Chem. Phys. 106 (1986) 281.
[30] M.J. Frisch et al., GAUSSIAN98, Version 5.4, Revision A.9, Gaussian
Inc., Pittsburgh, PA, 1998.
[31] G. Herzberg, Molecular Spectra and Molecular StructureElectronic
Spectra and Electronic Structure of Polyatomic Molecules, vol. III,
Van Nostrand, Princeton, 1966, p. 483.
[32] D.R. Lide, CRC Handbooks of Chemistry and Physics, 82nd ed.,
2001–2002.
[33] R.E. Rebbert, K.J. Laidler, J. Chem. Phys. 20 (1952) 574.
[34] S.P. Sander, R.R. Friedl, D.M. Golden, M.J. Kurylo, R.E. Huie,
V.L. Orkin, G.K. Moortgat, A.R. Ravishankara, C.E. Kolb, M.J.
Molina, B.J. Finlayson–Pitts, Chemical Kinetics and Photochem-
ical Data for Use in Stratospheric Modeling, JPL Publication,
02–25, 2003.
[
5] C. Kosmidis, K.W.D. Ledingham, A. Clark, A. Marshall, R.
Jennings, J. Sander, R.P. Singhal, Int. J. Mass Spectrom. Ion Proc.
1
35 (1994) 229.
6] M.S. Park, K.-H. Jung, H.P. Upadhyaya, H.-R. Volpp, Chem. Phys.
70 (2001) 133.
7] D.B. Galloway, T.G. Meyer, J. Bartz, L.G. Huey, F.F. Crim, J.
Chem. Phys. 100 (1994) 1946.
[
[
[
[
2
8] D.B. Galloway, J.A. Barta, L.G. Huey, F.F. Crim, J. Chem. Phys. 98
(
1993) 2107.
9] G.-M. Thomas, F.F. Crim, J. Mol. Struct. (Theochem) 337 (1995)
09.
2
[
[
[
10] M.L. McKee, Chem. Phys. Lett. 164 (1989) 520.
11] A.F. Tuck, J. Chem. Soc. Faraday Trans. II 73 (1977) 689.
12] H.L. Gregory, Ph.D.thesis, University of Wisconsin–Madison, 1992.
[35] P.A. Denis, O.N. Ventura, H.T. Le, M.T. Nguyen, Phys. Chem.
Chem. Phys. 5 (2003) 1730.