Report
First author et al.
Polymer as Catalyst for Amine Oxidative Coupling Reactions. J. Catal.
020, 385, 338-344.
meso-Tetraphenylporphyrin Chloride under Ambient Conditions.
Catal. Commun. 2010, 12, 202-206.
2
[
[
5] Zhang, N.; Li, X.; Liu, Y.; Long, R.; Li, M.; Chen, S.; Qi, Z.; Wang, C.;
Song, L.; Jiang, J.; Xiong, Y. Defective Tungsten Oxide Hydrate
Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic
Catalysis by Oxygen Vacancies and Brønsted Acid Sites. Small 2017,
[22] Zhou, X.-T.; Ren, Q.-G.; Ji, H.-B. Mimicking the Environment of Living
Organisms to Achieve the Oxidative Coupling of Amines to Imines
Catalyzed by Water-Soluble Metalloporphyrins. Tetrahedron Lett.
2012, 53, 3369-3373.
[23] Kim, S. S.;Thakur, S. S. Oxidative Coupling of Benzylamines into
N-Benzylbenzaldimines with MnTPPCl/t-BuOOH. Bull. Korean Chem.
Soc. 2005, 26, 1600-1602.
[24] Kim, S. S.; Thakur, S. S.; Song, J. Y.; Lee, K.-H. Oxidative Coupling of
Benzylamines into N-Benzylbenzaldimines with Mn(II)/tert-BuOOH
Bull. Korean Chem. Soc. 2005, 26, 499-501.
1
3, 1701354-1701363.
6] Hudwekar, A. D.; Verma, P. K.; Kour, J.; Balgotra, S.; Sawant, S. D.
Transition Metal-Free Oxidative Coupling of Primary Amines in
Polyethylene Glycol at Room Temperature: Synthesis of Imines,
Azobenzenes, Benzothiazoles, and Disulfides. Eur. J. Org. Chem. 2019,
4
2-1250.
[
[
[
7] Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T.
[25] Chen, F.; Yang, T.; Zhao, S.; Jiang, T.; Yu, L.; Xiong, H.; Guo, C.; Rao, Y.;
Liu, Y.; Liu, L.; Zhou, J.; Tu, P.; Ni, J.; Zhang, Q.; Li, X. Highly Selective
2 5 2
Selective Amine Oxidation Using Nb O Photocatalyst and O . ACS
Catal. 2011, 1, 1150-1153.
8] Lang, X.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. Selective Formation of
2 3
Oxidation of Amines to Imines by Mn O Catalyst under Eco-friendly
Conditions. Chin.Chem. Lett. 2019, 30, 2282-2286.
[26] Biswas, S.; Dutta, B.; Mullick, K.; Kuo, C.-H.; Poyraz, A. S.; Suib, S. L.
Aerobic Oxidation of Amines to Imines by Cesium-Promoted
Mesoporous Manganese Oxide. ACS Catal. 2015, 5, 4394-4403.
[27] Dutta, B.; Amin, A. S.; Wu, Y.; Poges, S.; Alpay, S. P.; Suib, S. L.
Imines by Aerobic Photocatalytic Oxidation of Amines on TiO
2
.
Angew. Chem. Int. Ed. 2011, 50, 3934-3937.
9] Neeli, C. K. P.; Ganji, S.; Ganjala, V. S. P.; Kamaraju, S. R. R.; Burri, D. R.
Oxidative Coupling of Primary Amines to Iminesunder Base-Free and
Additive-Free Conditions Over AuNPs/SBA-NH
2
Nanocatalyst. RSC
Mesoporous Cobalt/Manganese Oxide:
a
Highly Selective
Adv. 2014. 4, 14128-14135.
Bifunctional Catalyst for Amine-Imine Transformations. Green Chem.
2018, 20, 3180-3185.
[28] Zhang, Z.; Wang, F.; Wang, M.; Xu, S. T.; Chen, H. J.; Zhang, C. F.; Xu, J.
Tert-Butyl Hydroperoxide (TBHP)-Mediated Oxidative Self-Coupling
[
[
10] He, L.-P.; Chen, T.; Gong, D.; Lai, Z. P.; Huang, K.-W. Enhanced
Reactivities toward Amines by Introducing an Imine Arm to the
Pincer Ligand: Direct Coupling of Two Amines To Form an Imine
Without Oxidant. Organometallics 2012, 31, 5208-5211.
2
of Amines to Imines overα-MnO Catalyst. Green Chem. 2014, 16
11] Rodriguez-Lugo, R. E.; Chacon-Teran, M. A.; Leon, S. D.; Vogt, M.;
Rosenthal, A. J.; Landaeta, V. R. Synthesis, Characterization and
Pd(II)-Coordination Chemistry of the Ligand Tris(quinolin-8-yl)
Phosphite. Application in the Catalytic Aerobic Oxidation of Amines.
Dalton Trans. 2018, 47, 2061-2072.
2523-2527.
[29] Qiu, X.; Len, C.; Luque, R.; Li, Y. Solventless Oxidative Coupling of
Amines to Imines by Using Transition-Metal-Free Metal-Organic
Frameworks. ChemSusChem 2014, 7, 1684-1688.
4
[30] Qiao, W.; Song, T.; Zhao, B. [Zn O] Cluster-Based Metal-Organic
[
[
12] Deng, W.; Chen, J.; Kang, J.; Zhang, Q.; Wang, Y. Carbon
Nanotube-Supported Au-Pd Alloy with Cooperative Effect of Metal
Nanoparticles and Organic Ketone/Quinone Groups as a Highly
Efficient Catalyst for Aerobic Oxidation of Amines. Chem. Commun.
2
Frameworks as Catalysts for Conversion of CO . Chin. J. Chem. 2019,
37, 474-478.
[31] Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H.
Synergistically Directed Assembly of Aromatic Stacks Based
Metal-Organic Frameworks by Donor-Acceptor and Coordination
Interactions. Chin. J. Chem. 2019, 37, 871-877.
[32] Ge, D.; Qu, G.; Li, X.; Geng, K.; Cao, X.; Gu, H. Novel Transition
Bimetal-Organic Frameworks: Recyclable Catalyst for the Oxidative
Coupling of Primary Amines to Imines at Mild Conditions. New J.
Chem. 2016, 40, 5531-5536.
[33] Xu, C.; Liu, H.; Li, D.; Sub, J.-H.; Jiang, H.-L. Direct Evidence of Charge
Separation in a Metal-Organic Framework: Efficient and Selective
Photocatalytic Oxidative Coupling of Amines via Charge and Energy
Transfer. Chem. Sci. 2018, 9, 3152-3158.
[34] Nagarjun, N.; Jacob, M.; Varalakshmi, P.; Dhakshinamoorthy, A.
UiO-66(Ce) Metal-Organic Framework as a Highly Active and
Selective Catalyst for the Aerobic Oxidation of Benzyl Amines. Mol.
Catal. 2021, 499, 111277-111284.
[35] Venu, B.; Shirisha, V.; Vishali, B.; Naresh, G.; Kishore, R.; Sreedhar, I.;
Venugopal, A. A Cu-BTC Metal-Organic Framework (MOF) as an
Efficient Heterogeneous Catalyst for the Aerobic Oxidative Synthesis
of Imines from Primary Amines under Solvent free conditions. New J.
Chem. 2020, 44, 5972-5979.
[36] Liu, H.; Guo, Z.; Lv, H.; Liu, X.; Che, Y.; Mei, Yi.; Bai, R.; Chi, Y.; Xing, H.
Visible-Light-Driven Self-Coupling and Oxidative Dehydrogenation of
Amines to Imines via a Mn(II)-Based Coordination Polymer. Inorg.
Chem. Front. 2020, 7, 1016-1025.
2
016, 52, 6805-6808.
13] Johnson, J. A.; Luo, J.; Zhang, X.; Chen, Y.-S.; Morton, M. D.
Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic
Properties in Metal-Organic Frameworks. ACS Catal. 2015, 5, 5283-
5
291.
14] Largeron, M.; Fleury, M.-B. Bioinspired Oxidation Catalysts. Science
013, 339, 43-44.
15] Largeron, M.; Fleury, M.-B.
Topaquinone-Like Co-Catalytic
[
[
2
I
A
Biologically Inspired Cu
/
System for the Highly
Atom-Economical Aerobic Oxidation of Primary Amines to Imines.
Angew. Chem. Int. Ed. 2012, 51, 5409-5412.
[
[
[
[
16] Aguirre-Díaz, L. M.; Snejko, N.; Iglesias, M.; Sáncheꢀꢁ F.ꢂ
ꢃutiꢄrreꢀ-Puebla E.; Monge M. ꢅ. Efficient Rare-Earth-Based
Coordination Polymers as Green Photocatalysts for the Synthesis of
Imines at Room Temperature. Inorg. Chem. 2018, 57, 6883-6892.
17] Su, F.; Mathew, S. C.; Mꢆhlmann, L.; Antonietti, M.; Wang, X.,
Blechert S. Aerobic Oxidative Coupling of Amines by Carbon Nitride
Photocatalysis with Visible Light. Angew. Chem. Int. Ed. 2011, 50, 657
-660.
18] Wang, K.; Jiang, P.; Yang, M.; Ma, P.; Qin, J.; Huang, X.; Ma, L.; Li, R.
Metal-Free Nitrogen-Doped Carbon Nanosheets: a Catalyst for the
Direct Synthesis of Imines under Mild Conditions. Green Chem. 2019,
2
1, 2448-2461.
19] He, H.; Li, Z.; Li, K.; Lei, G.; Guan, X.; Zhang, G.; Zhang, F.; Fan, X.;
Peng, W.; Li, Y. Bifunctional Graphene-Based Metal-Free Catalysts for
Oxidative Coupling of Amines. ACS Appl. Mater. Interfaces 2019, 11,
[37] Wei, Y.-S.; Zhang, M.; Zou, R.; Xu, Q. Metal-Organic
Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020,
120, 12089-12174.
3
1844-31850.
[38] Feng, D.; Wang, K.; Wei, Z.; Chen, Y.-P.; Simon, C. M.; Arvapally, R. K.;
Martin, R. L.; Bosch, M.; Liu, T.-F.; Fordham, S.; Yuan, D.; Omary, M.
A.; Haranczyk, M.; Smit, B.; Zhou, H.-C. Kinetically Tuned Dimensional
Augmentation as a Versatile Synthetic Route Towards Robust
Metal-Organic Frameworks. Nat. Commun. 2014, 5, 5723-5730.
[39] Wang, X.-L.; Dong, L.-Z.; Qiao, M.; Tang, Y.-J.; Liu, J.; Li, Y.; Li, S.-L.; Su,
[
[
20] Zhao, C.; Gao, Y.; Zhang, Z.; Ma, D. Functions of Phytic Acid in
Fabricating Metal-Free Carbocatalyst for Oxidative Coupling of
Benzylamines. Chin. J. Chem. 2020, 38, 1292-1298.
21] Yuan, Q.-L.; Zhou, X.-T.; Ji, H.-B. Efficient Oxidative Coupling of
Amines
to
Imines
Catalyzed
by
Manganese(III)
6
www.cjc.wiley-vch.de
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
This article is protected by copyright. All rights reserved.
Chin. J. Chem. 2021, 39, XXX-XXX