LETTER
C–H and C–Si Functionalization of Furan Derivatives
1943
Rossi, R. Tetrahedron 2007, 63, 1970. (f) Bellina, F.;
TMS
I
COOEt
+
Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 6, 1379.
(g) Alagille, D.; Baldwin, R. M.; Tamagnan, G. D.
Tetrahedron Lett. 2005, 46, 1349. (h) Chiong, H. A.;
Daugulis, O. Org. Lett. 2007, 9, 1449. (i) Kondo, Y.;
Komine, T.; Sakamoto, T. Org. Lett. 2000, 2, 3111. (j)Ban,
I.; Sudo, T.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10,
3607. (k) Campeau, L.-C.; Bertrand-Laperle, M.; Leclerc,
J.-P.; Villemure, E.; Gorelsky, S.; Fagnou, K. J. Am. Chem.
Soc. 2008, 130, 3276. (l) Do, H.-Q.; Khan, R. M. K.;
Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
(m) Roger, J.; Pozgan, F.; Doucet, H. J. Org. Chem. 2009,
74, 1179.
8
3c
PdCl2(PPh3)2
(3 mol%)
COOEt
AgNO3/KF
DMSO, 100 °C, 24 h
9c 14%
Scheme 4
(5) For reviews, see: (a) Mori, A.; Sugie, A. Bull. Chem. Soc.
Jpn. 2008, 81, 548. (b) Satoh, T.; Miura, M. Chem. Lett.
2007, 36, 200. (c) Seregin, I. V.; Gevorgyan, V. Chem. Soc.
Rev. 2007, 36, 1173. (d) Alberico, D.; Scott, M. E.; Lautens,
M. Chem. Rev. 2007, 107, 174. (e) Campeau, L. C.; Stuart,
D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35.
(f) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60,
8991. (g) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
(6) CH functionalization of furans: (a) Itahara, T.; Hashimoto,
M.; Yumisashi, H. Synthesis 1984, 255. (b) McClure, M. S.;
Glover, B.; McSorley, E.; Millar, A.; Osterhout, M. H.;
Roschangar, F. Org. Lett. 2001, 3, 1677. (c) Glover, B.;
Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F.
Org. Lett. 2003, 5, 301. (d) Taljaard, B.; Burger, G. J. Adv.
Synth. Catal. 2002, 344, 1111. (e) Dwight, T. A.; Rue, N.
R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9,
3137. (f) Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.;
Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y.
Heterocycles 1990, 31, 1951.
ing that arylation and homocoupling of trimethylsilylated
furan are a novel class of reactions. These methods are ef-
fective for the functionalization reactions of furan deriva-
tives, which are potentially employed as several advanced
organic materials showing light-emitting characteristics,
etc.10
Acknowledgment
This work was partially supported by a Grant-in-Aid for Scientific
Research on Priority Areas, ‘Advanced Molecular Transformation
of Carbon Resources’ and Special Coordination Funds for Promo-
ting Science and Technology, Creation of Innovation Centers for
Advanced Interdisciplinary Research Areas (Innovative Bioproduc-
tion Kobe), by Ministry of Education, Culture, Sports, Science, and
Technology (MEXT), Japan
(7) Fractional addition of silver was shown to improve the yield
of the coupling product in the reactions of thiophene
derivatives.1b,2c
(8) (a) Hiyama, T. In Metal-Catalyzed Cross-Coupling
Reactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH:
Weinheim, 1998, 421. (b) Denmark, S. E.; Sweis, R. F.
Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.;
de Meijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim,
2004, 163.
(9) (a) Sugie, A.; Kobayashi, K.; Suzaki, Y.; Osakada, K. Chem.
Lett. 2006, 35, 1100. (b) Mori, A.; Sugie, A.; Furukawa, H.;
Suzaki, Y.; Osakada, K.; Akita, M. Chem. Lett. 2008, 38,
542. (c) Sugie, A.; Furukawa, H.; Suzaki, Y.; Osakada, K.;
Akita, M.; Monguchi, D.; Mori, A. Bull. Chem. Soc. Jpn.
2009, 82, 555.
References and Notes
(1) (a) Masui, K.; Ikegami, H.; Mori, A. J. Am. Chem. Soc.
2004, 126, 5074. (b) Takahashi, M.; Masui, K.; Sekiguchi,
H.; Kobayashi, N.; Mori, A.; Funahashi, M.; Tamaoki, N.
J. Am. Chem. Soc. 2006, 128, 10930.
(2) (a) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie,
M.; Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am. Chem.
Soc. 2003, 125, 1700. (b) Masui, K.; Mori, A.; Okano, K.;
Takamura, K.; Kinoshita, M.; Ikeda, T. Org. Lett. 2004, 6,
2011. (c) Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui,
K.; Mori, A. Org. Lett. 2005, 7, 5083. (d) Kobayashi, K.;
Mohamed Ahmed, M. S.; Mori, A. Tetrahedron 2006, 62,
9548. (e) Arai, N.; Takahashi, M.; Mitani, M.; Mori, A.
Synlett 2006, 3170. (f) Shikuma, J.; Mori, A.; Masui, K.;
Matsuura, R.; Sekiguchi, A.; Ikegami, H.; Kawamoto, M.;
Ikeda, T. Chem. Asian J. 2007, 2, 301. (g) Mori, A.;
Shikuma, J.; Kinoshita, M.; Ikeda, T.; Misaki, M.; Ueda, Y.;
Komura, M.; Asaoka, S.; Iyoda, T. Chem. Lett. 2008, 37,
272. (h) Arai, N.; Miyaoku, T.; Teruya, S.; Mori, A.
Tetrahedron Lett. 2008, 49, 1000. (i) Miyaoku, T.; Mori, A.
Heterocycles 2009, 77, 151.
(10) Experimental Procedure for the Homocoupling Reaction
of 1
To a 50 mL Schlenk tube equipped with a magnetic stirring
bar were added PdCl2 (PhCN)2 (5.8 mg, 0.015 mmol),
DMSO (3 mL), benzofuran (1, 55 mL, 0.5 mmol), and AgF
(127 mg, 1.0 mmol) in one portion, and the resulting mixture
was stirred at r.t. for 3 h. Additional AgF (2 × 1.0 mmol)
were then added, and stirring was continued for further 3 h
and 5 h, respectively. The reaction mixture was passed
through a Celite pad to remove a solid residue, and the cake
was washed repeatedly with Et2O. The filtrate was washed
with H2O twice (2 × 50 mL) and brine (50 mL). Then, the
organic layer was dried over anhyd MgSO4 and concentrated
under reduced pressure to leave a crude solid, which was
purified by chromatography on silica gel to afford 33 mg of
2 (56%).
(3) Metal-Catalyzed Cross-Coupling Reaction; Diederich, F.;
Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.
(4) (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.;
Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467. (b) Bold,
G.; Fässler, A.; Capraro, H.-G.; Cozens, R.; Klimkait, T.;
Lazdins, J.; Mestan, J.; Poncioni, B.; Rösel, J.; Stover, D.;
Tintelnot-Blomley, M.; Acemoglu, F.; Beck, W.; Boss, E.;
Eschbach, M.; Hürlimann, T.; Masso, E.; Roussel, S.; Ucci-
Stoll, K.; Wyss, D.; Lang, M. J. Med. Chem. 1998, 41, 3387.
(c) Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.;
Nomura, M. Tetrahedron 2003, 59, 5685. (d) Turner, G. L.;
Morris, J. A.; Greaney, M. F. Angew. Chem. Int. Ed. 2007,
46, 7996. (e) Bellina, F.; Calandri, C.; Cauteruccio, S.;
2,2¢-Bibenzofuran (2)11
Mp 202–203 °C. 1H NMR (500 MHz, CDCl3): d = 7.17 (s, 2
H), 7.25–7.37 (m, 4 H), 7.55 (d, J = 8.0 Hz, 2 H), 7.63 (d,
J = 8.2 Hz, 2 H). 13C NMR (125 MHz, CDCl3): d = 103.7,
Synlett 2009, No. 12, 1941–1944 © Thieme Stuttgart · New York