6
26
Vol. 52, No. 5
ence Promotion Program of Japan Science and Technology Corporation), for
his helpful suggestions.
References
Chart 2
1)
For example, see: Ogawa A., Nishiyama Y., Kambe N., Murai S., So-
noda N., Tetrahedron Lett., 28, 3271—3274 (1987).
Table 4
2) For example, see: Antebi S., Alper H., Tetrahedron Lett., 26, 2609—
612 (1985).
3) For example, see: Bischoff L., David C., Martin L., Meudal H.,
2
0
.05 eq VOCl , O , AcOEt
3
2
RSH
1/2 RS–SR
Roques B.-P., Fournié-Zaluski M.-C., J. Org. Chem., 62, 4848—4850
molecular sieves 3A, rt
(1997).
4)
Bodanszky M., “Principles of Peptide Synthesis: Reactivity and Struc-
ture Concepts in Organic Chemistry,” Springer Verlag, Hiderberg,
a)
Entry
Thiol
Product
Time (h) Yield (%)
1
984, p. 307.
5) Aida T., Akasaka T., Furukawa N., Oae S., Bull. Chem. Soc. Jpn., 49,
441—1442 (1976).
6) Wu X., Reike R. D., Zhu L., Synth. Commun., 26, 191—196 (1996).
Drabowicz J., Mikolajczyk M., Synthesis, 1980, 32—34 (1980).
8) Noureldin N. A., Caldwell M., Hendry J., Lee D. G., Synthesis, 1998,
587—1589 (1998).
9) Kesavan V., Bonnet-Delpon D., Bégué J.-P., Synthesis, 2000, 223—225
2000).
0) Tam J. P., Wu C.-R., Liu W., Zhang J.-W., J. Am. Chem. Soc., 113,
657—6662 (1991).
4
4
4
0
1
4
111
88
(93)
98
(quant)
84
1
2
3
4
b)
b)
(22)
1
43
b)
b)
(3)
7)
1.5
0.5)
1
b)
b)
b)
(
4
(
(75)
1
c)
53
13
45
b)
5)
(93)
(
1
1
5
6
7
109
80
6
1) Sanz R., Aguado R., Pedrosa M. R., Arnáiz F. J., Synthesis, 2002,
5
2
93
(99)
856—858 (2002).
1
1
3
6
b)
b)
b)
b)
(22)
12) Karimi B., Hazarkhani H., Zareyee D., Synthesis, 2002, 2513—2516
2002).
(
74
(
91
(99)
13) For example: Liu K.-T., Tong Y.-C., Synthesis, 1978, 669—670
4)
(1978).
1
1
1
4) For example: Simándi L. I., Németh S., Rumelis N., J. Mol. Catal., 42,
4
4
6
6
3
57—360 (1987).
8
9
20
66
96
98
5) For example: Cervilla A., Corma A., Fornes V., Llopis E., Palanca P.,
Rey F., Ribera A., J. Am. Chem. Soc., 116, 1595—1596 (1994).
6) For example: Iranpoor N., Zeynizadeh B., Synthesis, 1999, 49—50
(1999).
a) The physical data of the products were consistent with those of references.
17) For example: Rao T. V., Rao K. N., Jain S. L., Sain B., Synth. Com-
mun., 32, 1151—1157 (2002).
b) 0.4 eq of VOCl was used without molecular sieves 3A. c) Unidentified by-prod-
3
ucts were obtained.
18) For example: Shah S. T. A., Khan K. M., Fecker M., Voelter W., Tetra-
hedron Lett., 44, 6789—6791 (2003).
This method is equally applicable for the oxidative cou- 19) For example: Kirihara M., Takizawa S., Momose T., J. Chem. Soc.
Perkin Trans. 1, 1998, 7—8 (1998).
0) For example: Kirihara M., Ichinose M., Takizawa S., Momose T.,
Chem. Commun., 1998, 1691—1692 (1998).
1) For example: Kirihara M., Ochiai Y., Takizawa S., Takahata H.,
Nemoto H., Chem. Commun., 1999, 1387—1388 (1999).
2) For example: Kirihara M., Ochiai Y., Arai N., Takizawa S., Momose
T., Nemoto H., Tetrahedron Lett., 40, 9055—9057 (1999).
3) Organic syntheses using vanadium reagents developed by other
groups: Hirao T., Chem. Rev., 97, 2707—2724 (1997).
pling of several kinds of thiols (Table 4). In the parentheses,
2
2
2
2
we also show the results of the reaction using 0.4 eq VOCl3
without molecular sieves. Although the reaction rates were
relatively slow, dislufides were efficiently obtained in most
cases. As noted in the entry 3, 2-mercaptoethanol was oxi-
dized much faster than in the other cases. The reason for this
interesting phenomenon has not been clarified.
In conclusion, the VOCl -catalyzed aerobic oxidative cou-
3
24) Organic syntheses using vanadium reagents developed by other
pling of thiols should be a good method to prepare disulfides.
groups: Takada T., Sakurai H., Hirao T., J. Org. Chem., 66, 300—302
(2001).
Experimental
25) Organic syntheses using vanadium reagents developed by other
groups: Hirao T., Morimoto C., Takada T., Sakurai H., Tetrahedron
Lett., 42, 1961—1963 (2001).
General Procedures Thiols and vanadium compounds were obtained
from Wako Pure Chemical Industries, Kanto Kagaku, Nacalai Tesque, or
Tokyo Kasei Kogyo without purification. Products were characterized by 26) Organic syntheses using vanadium reagents developed by other
comparison of their physical data with those of known samples.
groups: Hirao T., Morimoto C., Takada T., Sakurai H., Tetrahedron,
The Aerobic Oxidation of Thiols Catalyzed by Trichlorooxyvanadium
57, 5073—5079 (2001).
in the Presence of Molecular Sieves 3A: General Procedures To a 27) Organic syntheses using vanadium reagents developed by other
stirred mixture of thiol (4.0 mmol), molecular sieves 3A (1.0 g) and ethyl ac-
groups: Hirao T., Takada T., Sakurai H., Org. Lett., 2, 3659—3661
etate (4.0 ml) was added VOCl (35 mg, 0.2 mmol) under an oxygen atmos-
(2000).
3
phere at room temperature. The reaction was monitored by thin layer chro- 28) Organic syntheses using vanadium reagents developed by other
matography and was continuously stirrered under the same conditions until
the thiol disappeared. After the reaction was completed, a drop of saturated
aqueous sodium bicarbonate was added and diluted with ethyl acetate
groups: Ishikawa T., Nonaka S., Ogawa A., Hirao T., Chem. Commun.,
1998, 1209—1210 (1998).
29) Organic syntheses using vanadium reagents developed by other
groups: Ishikawa T., Ogawa A., Hirao T., J. Am. Chem. Soc., 120,
5124—5125 (1998).
(30 ml). The resulting mixture was filtered with Cerite and the filtrate was
dried over anhydrous magnesium sulfate. The solvent was evaporated and
the residue was purified by silica gel column chromatography (hexane–ethyl 30) Organic syntheses using vanadium reagents developed by other
acetate as the eluents) to afford the pure products.
groups: Ishikawa T., Ogawa A., Hirao T., Organometallics, 17, 5713—
716 (1998).
5
Acknowledgments This work was supported in part by the Regional
Science Promotion Program of Japan Science and Technology Corporation.
We would like to express our appreciation to Mr. Masao Yaso (Regional Sci-
31) Organic syntheses using vanadium reagents developed by other
groups: Hirao T., Asahara M., Muguruma Y., Ogawa A., J. Org.
Chem., 63, 2812—2813 (1998).