Journal of the American Chemical Society
Communication
Backvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35,
̈
237.
(4) Miecznikowski, J. R.; Crabtree, R. H. Polyhedron 2004, 23, 2857.
(5) Campana, A. G.; Estev
́
ez, R. E.; Fuentes, N.; Robles, R.; Cuerva,
̃
J. M.; Bunuel, E.; Cardenas, D.; Oltra, J. E. Org. Lett. 2007, 9, 2195.
́
̃
(6) Koike, T.; Ikariya, T. Adv. Synth. Catal. 2004, 346, 37.
(7) (a) Tani, K.; Ono, N.; Okamoto, S.; Sato, F. J. Chem. Soc., Chem.
Commun. 1993, 386. (b) Hauwert, P.; Maestri, G.; Sprengers, J. W.;
Catellani, M.; Elsevier, C. J. Angew. Chem., Int. Ed. 2008, 47, 3223.
(c) Hauwert, P.; Boerleider, R.; Warsink, S.; Weigand, J. J.; Elsevier, C.
J. J. Am. Chem. Soc. 2010, 132, 16900.
Figure 7. Semireduction of alkynes using 3 and formic acid.
and aliphatic alkynes, and only minor over-reduction to the
corresponding alkanes was observed.23
(8) (a) Brunel, J. M. Tetrahedron 2007, 63, 3899. (b) Brunel, J. M.
Synlett 2007, 330.
In summary, the use of a mixed NHC/PR3 environment
about a palladium center has made possible the isolation of a
unique hydridoformatopalladium complex, 4, involved in the
dehydrogenation of formic acid. Efficient catalytic hydro-
genation of alkenes and alkynes using formic acid proceed via
a tandem sequence using 3. The [Pd(NHC)(PCy3)] complexes
examined play a dual role in catalysis: they facilitate the
dehydrogenation of formic acid to generate hydrogen and
subsequently make use of the H2 formed in situ to reduce C−C
multiple bonds. DFT calculations support the experimental
observations and mechanistic conclusions. The reduction of a
variety of cyclic and acyclic olefins bearing diverse functional
groups was achieved in very good isolated yields. The system
proved to be stereo- and chemoselective for the semi-
hydrogenation of aromatic and aliphatic internal alkynes to
the corresponding Z alkenes under mild conditions. Studies
aimed at capitalizing on the fascinating reactivity of these Pd(0)
complexes are presently ongoing in our laboratories.
(9) Jurcí
2509.
(10) Fantasia, S.; Egbert, J. D.; Jurcí
̌
k, V.; Nolan, S. P.; Cazin, C. S. J. Chem.Eur. J. 2009, 15,
̌
k, V.; Cazin, C. S. J.; Jacobsen,
H.; Cavallo, L.; Heinekey, D. M.; Nolan, S. P. Angew. Chem., Int. Ed.
2009, 48, 5182.
1
(11) For H and 31P{1H} NMR spectra of reactions between 1 and
formic acid in THF-d8 recorded at different temperatures, see the SI.
(12) Formation of H2 was clearly observed by 1H NMR spectroscopy
(see the SI).
(13) Spectra from the labeling studies are available in the SI.
(14) CCDC-873769 contains the supplementary crystallographic
data for 4. These data can be obtained free of charge from the
(15) Darensbourg, D. J.; Wiegreffe, P.; Riordan, C. G. J. Am. Chem.
Soc. 1990, 112, 5759.
(16) (a) N-Heterocyclic Carbenes in Transition Metal Catalysis and
Organocatalysis; Cazin, C. S. J., Ed.; Springer: London, 2011.
(b) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. (c) Scott, N. M.;
Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815.
(17) Enthaler, S. ChemSusChem 2008, 1, 801.
(18) (a) Johnson, T. C.; Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010,
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and details, NMR spectra of
stoichiometric reactions and catalytic products, a CIF for 4,
Cartesian coordinates and energies for all species discussed in
the text, and computational details. This material is available
■
S
39, 81. (b) Joo,
́
F. ChemSusChem 2008, 1, 805.
(19) (a) Boddien, A.; Mellmann, D.; Gartner, F.; Jackstell, R.; Junge,
H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011,
̈
333, 1733. (b) Loges, B.; Boddien, A.; Gartner, F.; Junge, H.; Beller,
̈
M. Top. Catal. 2010, 53, 902. (c) Fellay, C.; Yan, N.; Dyson, P. J.;
Laurenczy, G. Chem.Eur. J. 2009, 15, 3752. (d) Fellay, C.; Dyson, P.
J.; Laurenczy, G. Angew. Chem., Int. Ed. 2008, 47, 3966. (e) Fukuzumi,
S.; Kobayashi, T.; Suenobu, T. ChemSusChem 2008, 1, 827.
(20) For a recent contribution examining the formation of formato
complexes using CO2 insertion into M−H bonds of Ni and Pd pincer
complexes, see: Suh, H.-W.; Schmeier, T. J.; Hazari, N.; Kemp, R. A.;
Takase, M. K. Organometallics 2012, 31, 8225.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(21) Hydrogen production experiments were carried out using 0.5
mol% [Pd(IPr)(PCy3)] (see the SI).
The authors declare no competing financial interest.
(22) Hartmann, C. E.; Jurcí
Commun. 2013, 49, 1005.
(23) The addition of a drop of mercury resulted in a noticeable
decrease in conversion (see the SI). For the limitations of the mercury
drop test, see: Crabtree, R. H. Chem. Rev. 2012, 112, 1536.
̌
k, V.; Songis, O.; Cazin, C. S. J. Chem.
ACKNOWLEDGMENTS
The EPSRC and the Royal Society (University Research
Fellowship to C.S.J.C.), the Spanish MICINN (Ramon
Contract RYC-2009-05226 to A.P.), the EC (Career Integra-
tion Grant CIG09-GA-2011-293900 to A.P.), and Generalitat
de Catalunya (BE Fellowship 2011BE100793 to A.P.) are
acknowledged for financial support. Umicore AG is thanked for
a generous gift of materials.
■
́
y Cajal
REFERENCES
■
(1) de Vries, J. G.; Elsevier, C. J. Handbook of Homogeneous
Hydrogenation; Wiley-VCH: Weinheim, Germany, 2007.
(2) Molkov, V. In Fire and Explosion Hazards: Proceedings of the 5th
International Seminar; Bradley, D., Drysdale, D., Molkov, V., Carvel, R.,
Eds.; University of Edinburgh: Edinburgh, U.K., 2007.
(3) For reviews of transfer hydrogenation reactions, see: (a) Brieger,
G.; Nestrick, T. J. Chem. Rev. 1974, 74, 567. (b) Zassinovich, G.;
Mestroni, G.; Gladiali, S. Chem. Rev. 1992, 92, 1051. (c) Gladiali, S.;
Alberico, E. Chem. Soc. Rev. 2006, 35, 226. (d) Samec, J. S. M.;
D
dx.doi.org/10.1021/ja311087c | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX