Complex of [BMIm] PF6 with PEG1000 for Suzuki and Heck reaction
(E)-Methyl 3-(4-nitrophenyl) acrylate
chromatograph equipped with a 30 m  0.32 mm  0.5 mm HP-
Innowax capillary column and a flame ionization detector. GC-
MS analyses were performed on a Saturn 2000 GC-MS instrument.
Rf = 0.4 (petroleum ether/ethyl acetate = 20:1, v/v). Chromatography
solvent petroleum ether/ethyl acetate = 50/1, v/v). 1H NMR
(500 MHz, CDCl3): s = 8.23–8.25 (m, 2H), 7.66–7.73 (m, 3H), 6.55 (d,
J = 16.1 Hz, 1H), 3.83 (s, 3H).
Preparation of PEG1000–[BMIm] PF6
[BMIm] PF6 (10.0 mmol) was added to a 100 ml methanol contain-
ing PEG1000 (10.0 mmol) and stirred at room temperature for
10 min. The solution was concentrated under vacuum to give
the desired product.
(E)-Ethyl 3-(4-nitrophenyl)acrylate
Rf = 0.4 (petroleum ether/ethyl acetate = 20:1, v/v). Chromatography
solvent petroleum ether/ethyl acetate = 50/1, v/v). M.p. 134.9–136.1 ꢀC;
1H NMR (500 MHz, DMSO): s =8.29–8.32 (m, 2H), 7.24–8.16 (m, 3H),
6.95 (d, J= 16.0 Hz, 1H), 4.25–4.30 (m, 2H), 1.33 (t, J= 7.1 Hz, 3H).
General Procedure for Suzuki Cross-Coupling Reaction
Under air atmosphere, a flask was charged with aryl halides
(1.0 mmol), p-methoxybenzeneboronic acid (1.2 mmol), Cs2CO3
(2.0 mmol), Pd(OAc)2 (5 mmol%) and PEG1000–[BMIm] PF6 (2.0 g).
The mixture was heated to 80 ꢀC for the indicated time. After
the reaction solution was cooled to room temperature, the
mixture was extracted four times with ether (4 Â 15 ml). The
combined ether phase was analyzed by GC-MS and then concen-
trated. Further purification of the product was achieved by flash
chromatography on a silica gel column.
Supporting Information
Supporting information may be found in the online version of
this article.
References
[1] L. X. Yin, J. Liebscher, Chem. Rev. 2007, 107, 133.
[2] G. Bringmann, S. Rudenauer, T. Bruhn, L. Benson, R. Brun,
Tetrahedron 2008, 64, 5563.
[3] Y. D. Wang, M. Dutia, M. B. Floyd, A. S. Prashad, D. Berger, M. Lin,
Tetrahedron 2009, 65, 57.
[4] J. C. Park, E. J. Heo, A. Kim, M. Kim, K. H. Park, H. Song, J. Phys. Chem.
C 2011, 115, 15772.
General Procedure for Heck Reaction
[5] K. Karami, C. Rizzoli, M. M. Salah, J. Organomet. Chem. 2011, 696, 940.
[6] Y. He, C. Cai, Catal. Commun. 2011, 12, 678.
[7] H. L. Qiu, S. M. Sarkar, D. H. Lee, M. J. Jin, Green Chem. 2008, 10, 37.
[8] X. Y. Shi, X. Y. Han, W. J. Ma, J. Fan, J. F. Wei, Appl. Organometal. Chem.
2012, 26, 16.
[9] H. Hagiwara, K. Sato, T. Hoshi, T. Suzuki, Synlett 2011, 2545.
[10] L. Lin, Y. C. Li, S. B. Zhang, S. H. Li, Synlett 2011, 1779.
[11] J. Dupont, R. F. D. Souza, P. A. Z. Suarez, Chem. Rev. 2002, 102, 3667.
[12] R. Sheldon, Chem. Commun. 2001, 2399.
[13] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772.
[14] F. McLachlan, C. J. Mathewas, P. J. Smith, T. Welton, Organometallics
2003, 22, 5350.
Typical procedure for Heck reaction: under air atmosphere, a flask
was charged with aryl halides (1.0 mmol), terminal olefins
(2.0 mmol), Et3N (2.0 mmol), PEG1000–[BMIm] PF6 (2.0g) and Pd
(OAc)2 (5mmol%). The mixture was heated to 60ꢀC for the
indicated time and progress of the reaction was monitored by
TLC. After the reaction solution was cooled to room temperature,
the mixture was extracted four times with ether (4 Â 15 ml). The
combined ether phase was analyzed by GC or HPLC and then
concentrated. Further purification of the product was achieved by
flash chromatography on a silica gel column. All products are known
compounds and the identity of some represent compounds was
confirmed by comparison with literature spectroscopic data.
[15] J. C. Xiao, J. M. Shreeve, J. Org. Chem. 2005, 70, 3072.
[16] J. Carmichael, M. J. Earle, J. D. Holbrey, P. B. McCormac, K. R. Seddon,
Org. Lett. 1999, 1, 997.
[17] J. Mathews, P. J. Smith, T. Welton, Chem. Commun. 2000, 1249.
[18] H. Yang, C. C. Tai, Y. T. Huang, I. W. Sun, Tetrahedron 2005, 61, 4857.
[19] M. M. Manas, R. Pleixats, A. S. Muns, Synlett 2006, 3001.
[20] Z. Y. Du, W. W. Zhou, L. Bai, F. Wang, J. X. Wang, Synlett 2011, 369.
[21] K. S. A. Vallin, P. Emilsson, M. Larhed, A. Hallberg, J. Org. Chem. 2002, 67,
6243.
4-Methoxylbiphenyl
Rf = 0.5 (petroleum ether). Chromatography solvent petroleum
1
ether. HNMR (500 MHz, DMSO): s = 7.60–7.85 (m, 4H), 7.41–7.45
[22] R. Hajipour, K. Karami, F. Rafiee, Appl. Organometal. Chem. 2012, 26, 27.
[23] Taher, J. B. Kim, J. Y. Jung, W. S. Ahn, M. J. Jin, Synlett 2009, 2477.
[24] R. H. Wang, B. Twamley, J. M. Shreeve, J. Org. Chem. 2006, 71, 426.
[25] J. D. Revell, A. Ganesan, Org. Lett. 2002, 4, 3071.
[26] J. M. Harris, Polyethylene Glycol Chemistry: Biotechnological and Bio-
medical Applications, Plenum Press, New York, 1992.
[27] G. K. Datta, H. V. Schenck, A. Hallberg, M. Larhed, J. Org. Chem. 2006, 71, 3896.
[28] D. Q. Xu, S. P. Luo, Y. F. Wang, A. B. Xia, H. D. Yue, L. P. Wang, Z. Y. Xu,
Chem. Commun. 2007, 4393.
(m, 2H), 7.23–7.32 (s, 1H), 6.98–7.00 (m, 2H), 3.5 (s, 3H).
(E)-Methyl cinnamate
Rf = 0.4 (petroleum ether/ethyl acetate = 100:1, v/v). Chromatog-
raphy solvent petroleum ether/ethyl acetate = 150/1, v/v). 1 H
NMR (500 MHz, CDCl3): s = 7.73(d, J = 16.0 Hz, 1H), 7.28–7.55(m,
5H), 6.45 (d, J = 16.0 Hz, 1H), 3.83 (s, 3H).
[29] S. P. Luo, S. Zhang, Y. F. Wang, A. B. Xia, G. C. Zhang, X. H. Du, D. Q.
Xu, J. Org. Chem. 2010, 75, 1888.
[30] W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290.
[31] W. A. Herrmann, C. P. Reisinger, M. Spiegler, J. Organomet. Chem.
1998, 557, 93.
(E)-Ethyl cinnamate
[32] M. Zhang, J. K. Huang, M. L. Trudell, S. P. Nolan, J. Org. Chem. 1999,
64, 3804.
[33] J. H. Li, X. C. Hu, Y. Liang, Y. X. Xie, Tetrahedron 2006, 62, 31.
[34] G. P. Zhang, H. H. Zhou, J. Q. Hu, M. Liu, Y. F. Kuang, Green Chem. 2009, 11,
1428.
Rf = 0.5 (petroleum ether/ethyl acetate = 100:1, v/v). Chromatog-
raphy solvent petroleum ether/ethyl acetate = 150/1, v/v). 1H
NMR (500 MHz, CDCl3): s = 7.72 (d, J = 16.1 Hz, 1H), 7.379–7.55
(m, 5H), 6.44–6.47 (m, 1H), 4.26–4.30 (m, 2H) 1.34–1.37 (m, 3H).
Appl. Organometal. Chem. 2012, 26, 305–309
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc