Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 4
DOI: 10.1039/C7OB01005B
COMMUNICATION
Journal Name
2012, 14, 2371; (h) N.K. Pahadi, M. Paley, R. Jana, S.R.
dioxalane moiety was also successfully validated (12e). N-
benzyl moiety, which is usually fragile under various reductive
conditions, remained fully intact in our system. Both aromatic
and aliphatic amines are suitable for the reaction, and both
primary and secondary amines can be used.
Waetzig, J.A. Tunge J. Am. Chem. Soc., 2009, 131, 46, 16626.
(i) J.P. Patel, A.-H. Li, H. Dong, V.L. Korlipara, M.J. Mulvihill,
Tetrahedron Lett., 2009, 50, 44, 5975.
3
4
S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451.
(a) D. Chusov, B. List, Angew. Chem., Int. Ed. 2014, 53, 5199.
(b) P.N. Kolesnikov, D.L. Usanov, E.A. Barablina, V.I. Maleev,
D. Chusov, Org. Lett. 2014, 16, 5068. (c) P.N. Kolesnikov, N.Z.
Yagafarov, D.L. Usanov, V.I. Maleev, D. Chusov, Org. Lett.
2015, 17, 173. (d) N.Z. Yagafarov, P.N. Kolesnikov, D.L.
Usanov, V.V. Novikov, Y.V. Nelyubina, D. Chusov, Chem.
Commun. 2016, 52, 1397. (e) O.I. Afanasyev, A.A. Tsygankov,
D.L. Usanov, D. Chusov, Org. Lett. 2016, 18, 22, 5968.
Surprisingly, ketones are even more suitable for this reaction.
Only when hexane-2,5-dione was used as a starting material
exclusive formation of N-PMP-2,5-dimethylpyrrole 12m was
detected. When naphtylethylamine was used together with
benzylacetone the product of 1.5:1 dr was obtained (12i).
Based on our previous studies we suggest
a plausible
5
6
For the recent examples of using carbon monoxide for nitro
group reductive transformation see H.-Q. Li, X. Liu, Q. Zhang,
mechanism of the process (Scheme 5). The reaction between
an amine and a carbonyl compound leads to the formation of a
hemiaminal. The oxidative addition of iridium complex to C-O
bond of the heminal leads to a new complex. After an attack of
hydroxyl group on the coordinated CO and elimination of CO2,
the iridium hydride complex should be formed. Reductive
elimination then leads to the formation of the product and
regeneration of the catalytic species.
S.-S. Li, Y.-M. Liu, H.-Y. He, Y. Cao, Chem. Comm., 2015, 51
11217.
,
For the state-of-the-art examples of reductive application CO
in the water-gas shift reaction in organic chemistry see: (a)
S.E. Denmark, M.Y.S. Ibrahim A. Ambrosi, ACS Catalysis 2017,
7
, 1, 613; (b) A. Ambrosi, S.E. Denmark, Angew. Chem. Int.
Ed. 2016, 55, 12164; (c) J. W. Park, Y. K. Chung, ACS Catal.
2015, , 4846; (d) S.E. Denmark, Z.D. Matesich, J. Org. Chem.
5
2014, 79, 5970; (e) S.E.Denmark, S.T. Nguyen, Org. Lett.
2009, 11, 781; (f)L. He, L. C. Wang, H. Sun, J. Ni, Y. Cao, H. Y.
He K. N. Fan, Angew. Chem. Int. Ed., 2009, 48, 9538; (g) J.
Huang, L. Yu, L. He, Y.M. Liu, Y. Cao, K. N. Fan, Green Chem.,
2011, 13, 2672; (h) Dong, M.M. Zhu, G.S. Zhang, Y.M. Liu, Y.
Conclusions
In summary, we have found a new type of catalyst which can
provide atom-economical reductive amination of aldehydes
and ketones. The methodology takes advantage of the unique
deoxygenative potential of carbon monooxide and does not
require an external hydrogen source, which enables full
compatibility with a range of functional groups prone to
reduction (e.g. N-benzyl, dioxalane, halo-, cyclopropanes).
Cao, S. Liu, Y.D. Wang, Chinese Journal of Catalysis, 2016, 37
,
1669; (j) J. Ni, L. He, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Chem.
Commun., 2011, 47, 812; (k) L. He, F.-J. Yu, X.-B. Lou, Y. Cao,
H.-Y. He, K.N. Fan, Chem. Commun., 2010, 46, 1553.
For the recent examples of metal carbonyl as the source of
carbon monoxide see: (a) N. Jana, F. Zhou, T.G. Driver, J. Am.
Chem. Soc., 2015. 137,21, 6738; (b) F. Zhou, D.S. Wang, T.G.
Driver, Adv. Synth. Catal., 2015. 357, 16-17, 3463.
7
8
9
A.R. Kudinov, D.A. Loginov, Z.A. Starikova, P.V. Petrovskii, J.
Organomet. Chem. 2002, 649, 136.
C. White, A. Yates, P. M. Maitlis, Inorg. Synth. 1992, 29, 228.
Notes and references
10 D. A. Loginov, A. M. Miloserdov, Z. A. Starikova, P. V.
Petrovskii, A. R. Kudinov, Mendeleev Commun. 2012, 22, 192.
11 A.A. Chamkin, A.M. Finogenova, Yu.V. Nelyubina, J. Laskova,
‡We thank the Russian Academy of Sciences (P-8 grant), the
Russian Foundation for Basic Research (grant No. 15-03-02548
A) and the Council of the President of the Russian Federation
(Grant for Young Scientists No. МК-520.2017.3) for the financial
support. D.A.L. gratefully acknowledges support of the Russian
Foundation for Basic Research (project 16-33-60140 mol_а_dk).
D.C. and A.F.S. thanks the Ministry of Education and Science of
the Russian Federation (Agreement number 02.a03.21.0008).
The contribution of Center for molecule composition studies of
INEOS RAS is gratefully acknowledged.
A.R. Kudinov, D.A. Loginov, Mendeleev Commun. 2016, 26
491.
,
12 C. White, S. J. Thompson, P.M. Maitlis, Dalton Trans. 1978,
10, 1305.
13 J.F. Frazier, J.S. Merola, Polyhedron 1992, 11, 2917.
1
(a) E.W. Baxter, A. B. Reitz, in Organic Reactions, Vol. 59; L. E.
Overman, A. Overman, Eds.; Wiley-VCH: Weinheim, 2002; (b)
A.F. Abdel-Magid, S.J. Mehrman, Org. Process Res. Devel.
2006, 10, 971; (c) R.P. Tripathi, S.S. Verma, J. Pandey, V.K.
Tiwari, Curr. Org. Chem. 2008, 12, 1093; (d) P. Margaretha, in
Science of Synthesis Knowledge Updates 2010/4; Thieme:
Stuttgart, 2011; 405.
2
For selected recent papers on reductive amination see: (a) H.
Alinezhad, H. Yavari, F. Salehian Curr. Org. Chem. 2015, 19
1021; (b) S. Pisiewicz, T. Stemmler, A.-E. Surkus, K. Junge, M.
Beller, ChemCatChem, 2015, , 62; (c) M. Zhu, Cat. Lett.
,
7
2014, 144, 1568; (d) X. Yan, E. Sokol, X. Li, G. Li, S. Xu, R.
Graham Cooks, Angew. Chem. Int. Ed. 2014, 53, 5931; (e) E.E.
Drinkel, R.R. Campedelli, A.M. Manfredi, H.D. Fiedler, F.
Nome, J. Org. Chem. 2014, 79, 2574; (f) D. Talwar, N. Poyatos
Salguero, C.M. Robertson, J. Xiao, Chem. Eur. J. 2014, 20
245; (g) S. Werkmeister, K. Junge, M. Beller, Green Chem.
,
4 | Org. Biomol. Chem., 2017, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins