Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
10
J . Org. Chem. 1999, 64, 10-11
Ta ble 1. Effect of th e Solven t on th e Ra te of th e
P d 2(d ba )3/P (t-Bu )3-Ca ta lyzed Heck Cou p lin g of
Ch lor oben zen e a n d Meth yl Acr yla te
Heck Rea ction s in th e P r esen ce of P (t-Bu )3:
Exp a n d ed Scop e a n d Mild er Rea ction
Con d ition s for th e Cou p lin g of Ar yl Ch lor id es
Adam F. Littke and Gregory C. Fu*
Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139
entry
solvent
% yield (GC)
Received October 5, 1998
1
2
3
4
5
6
7
CH3CN
N-methylpyrrolidine
N,N-dimethylacetamide
DMF
toluene
THF
dioxane
14
14
16
19
27
30
39
Aryl chlorides are both more readily available and less
expensive than aryl bromides and aryl iodides. Unfortu-
nately, for many years, reports of palladium-catalyzed
coupling reactions of aryl chlorides were relatively rare.1
This situation has changed rapidly in the past few years.
For example, in the case of the Heck reaction,2 noteworthy
advances in the use of aryl chlorides have been described
by Milstein,3 Herrmann,4 Reetz,5 and Beller,6 although, with
the exception of an example by Milstein,3b highly electron-
rich or hindered aryl chlorides have not proved to be
synthetically useful substrates.7,8
Recent work by us and by others has established that
certain palladium-catalyzed coupling reactions of aryl chlo-
rides can be accomplished quite efficiently in the presence
of sterically hindered, electron-rich phosphines (e.g., P(t-
Bu)3).9,10 Perhaps the simplest explanation for this enhanced
reactivity is that oxidative addition of an aryl chloride is
more facile with a more electron-rich palladium complex;
however, in at least some instances, the true explanation is
probably not so straightforward.11 To the best of our
knowledge, the possibility that the Heck reaction might also
be susceptible to this P(t-Bu)3 effect has not been investi-
gated. In this paper, we establish that in the presence of
P(t-Bu)3 the Heck reaction can indeed be achieved with good
efficiency (eq 1).
(1) The low reactivity of aryl chlorides in cross-coupling reactions is
generally ascribed to their reluctance to oxidatively add to Pd(0). For a
discussion, see: Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047-1062.
(2) For reviews of the Heck reaction, see: (a) Bra¨se, S.; de Meijere, A. In
Metal Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J ., Eds.;
Wiley: New York, 1998; Chapter 3. (b) Cabri, W.; Candiani, I. Acc. Chem.
Res. 1995, 28, 2-7. (c) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed.
Engl. 1994, 33, 2379-2411. (d) Heck, R. F. In Comprehensive Organic
Synthesis; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 4, Chapter
4.3.
We have determined that P(t-Bu)3 is an unusually effec-
tive ligand for the Pd2(dba)3-catalyzed coupling of chloroben-
zene with methyl acrylate (eq 2; dba ) dibenzylideneace-
tone). Not only triarylphosphines, but also other trialkylphos-
(3) (a) Chlorobenzene and electron-poor aryl chlorides (150 °C): Ben-
David, Y.; Portnoy, M.; Gozin, M.; Milstein, D. Organometallics 1992, 11,
1995-1996. (b) Chloroanisole, chlorobenzene, and electron-poor aryl chlo-
rides (140 °C): Portnoy, M.; Ben-David, Y.; Milstein, D. Organometallics
1993, 12, 4734-4735. (c) Portnoy, M.; Ben-David, Y.; Rousso, I.; Milstein,
D. Organometallics 1994, 13, 3465-3479.
(4) (a) 4-Chlorobenzaldehyde (150 °C): Herrmann, W. A.; Brossmer, C.;
Ofele, K.; Beller, M.; Fischer, H. J . Mol. Catal. A 1995, 103, 133-146. (b)
Electron-poor aryl chlorides (130 °C): Herrmann, W. A.; Brossmer, C.; Ofele,
K.; Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1844-1848. Herrmann, W. A.; Brossmer, C.;
Reisinger, C.-P.; Reirmeier, T. H.; Ofele, K.; Beller, M. Chem. Eur. J . 1997,
3, 1357-1364. (c) Electron-poor aryl chlorides (130 °C): Herrmann, W. A.;
Elison, M.; Fischer, J .; Ko¨cher, C.; Artus, G. R. J . Angew. Chem., Int. Ed.
Engl. 1995, 34, 2371-2374.
(5) Chlorotoluene, chlorobenzene, and chlorobenzaldehyde (150 °C):
Reetz, M. T.; Lohmer, G.; Schwickardi, R. Angew. Chem., Int. Ed. Engl.
1998, 37, 481-483.
phines (even PCy3), appear to be completely ineffective
ligands for this process. Especially noteworthy is the fact
that we observe essentially no coupling in the presence of
phosphine A (eq 2), which has steric and electronic proper-
ties that are quite similar to P(t-Bu)3 (cone angles: P(t-Bu)3,
182°; A, 184°) (pKa of conjugate acid: P(t-Bu)3, 11.40; A,
11.02).12
The rate of the coupling reaction is solvent-dependent,
with dioxane being the solvent of choice, although THF and
toluene are also suitable (Table 1). Cs2CO3 and K3PO4 are
the bases of choice among those that we have surveyed
(6) Electron-poor aryl chlorides (140-160 °C): Beller, M.; Zapf, A. Synlett
1998, 792-793.
(7) For an overview of Heck couplings of aryl chlorides, see: Riermeier,
T. H.; Zapf, A.; Beller, M. Top. Catal. 1997, 4, 301-309.
(8) Electron-poor aryl halides oxidatively add to Pd(0) more readily than
do the corresponding electron-rich aryl halides. For a discussion, see refs 1
and 2.
(9) Suzuki cross-coupling: Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed.,
in press.
(10) For example, see: (a) Carbonylation: Huser, M.; Youinou, M.-T.;
Osborn, J . A. Angew. Chem., Int. Ed. Engl. 1989, 28, 1386-1388. Ben-David,
Y.; Portnoy, M.; Milstein, D. J . Am. Chem. Soc. 1989, 111, 8742-8744. (b)
Dechlorination: Ben-David, Y.; Gozin, M.; Portnoy, M.; Milstein, D. J . Mol.
Catal. 1992, 73, 173-180. (c) Cross-coupling with vinylsilanes and arylsi-
lanes: Gouda, K.-i.; Hagiwara, E.; Hatanaka, Y.; Hiyama, T. J . Org. Chem.
1996, 61, 7232-7233. (d) Suzuki cross-coupling: Shen, W. Tetrahedron Lett.
1997, 38, 5575-5578. Firooznia, F.; Gude, C.; Chan, K.; Satoh, Y. Tetra-
hedron Lett. 1998, 39, 3985-3988. Old, D. W.; Wolfe, J . P.; Buchwald, S. L.
J . Am. Chem. Soc. 1998, 120, 9722-9723. (e) Amination: Reddy, N. P.;
Tanaka, M. Tetrahedron Lett. 1997, 38, 4807-4810. Nishiyama, M.;
Yamamoto, T.; Koie, Y. Tetrahedron Lett. 1998, 39, 617-620. Hamann, B.
C.; Hartwig, J . F. J . Am. Chem. Soc. 1998, 120, 7369-7370. Old, D. W.;
Wolfe, J . P.; Buchwald, S. L. J . Am. Chem. Soc. 1998, 120, 9722-9723.
(11) For example, see: (a) Portnoy, M.; Milstein, D. Organometallics
1993, 12, 1655-1664. Portnoy, M.; Milstein, D. Organometallics 1993, 12,
1665-1673. Reference 3. (b) Reference 4a. (c) Beller has shown that Heck
reactions of electron-poor aryl chlorides can be effected with electron-poor
phosphites as ligands: Reference 6.
(12) Wada, M.; Higashizaki, S. J . Chem. Soc., Chem. Commun. 1984,
482-483. For an extensive compilation of cone angles and pKa data for
phosphines, see: Rahman, M. M.; Liu, H.-Y.; Eriks, K.; Prock, A.; Giering,
W. P. Organometallics 1989, 8, 1-7.
10.1021/jo9820059 CCC: $18.00 © 1999 American Chemical Society
Published on Web 12/19/1998