Conversion of Primary Amides to Their Corresponding Methyl Esters
FULL PAPER
Supporting Information (see footnote on the first page of this arti-
Experimental Section
cle): Experimental procedure, energy data and coordinates for all
1
TSs, IRC plots, and H NMR and 13C NMR spectroscopic data.
NMR spectra were recorded with a Bruker-AV-400 instrument with
the use of CDCl3 as the solvent, unless another solvent is specifi-
cally stated. Chemicals and silica gel (200–400 mesh) were bought
and used as received. Autospec was used for MS determination.
Acknowledgments
All compounds involved in the experiments are known. Thus, only
1H and 13C NMR spectra were determined. The general experimen-
tal procedure is summarized in the Supporting Information. The
NMR spectroscopic data of all compounds involved in this paper
are listed below.
This work was supported by CAS to H.-J. Z. (“Hundreds Talent
Program”) and by the Science and Technology Committee of Yun-
nan Province. The Super-Computational-Center in CAS is thanked
for partial computational support.
PhCOOMe (1): 1H NMR (400 MHz, CDCl3): δ = 8.08 (d, J =
7.6 Hz, 2 H), 7.57 (t, J = 7.2 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 2 H),
3.93 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 166.9, 132.7,
129.9, 129.3, 128.2, 51.8 ppm.
[1] R. M. Propst III, L. S. Trzupek, J. Am. Chem. Soc. 1981, 103,
3233–3235.
[2] A. Solladié-Cavallo, M. Bencheqroun, J. Org. Chem. 1992, 57,
3-F-PhCOOMe (2): 1H NMR (400 MHz, CDCl3): δ = 7.96 (s, 1
H), 7.86 (d, J = 8.0 Hz, 1 H), 7.47 (dd, J = 8.0 Hz, 0.8 Hz, 1 H),
7.32 (t, J = 8.0 Hz, 1 H), 3.88 (s, 3 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 165.7, 134.4, 132.8, 132.7, 129.5, 127.5, 52.2 ppm.
5831–5834.
[3] J. J. Hans, R. W. Driver, S. D. Burke, J. Org. Chem. 1999, 64,
1430–1431.
[4] X. Huang, G. Y. Wang, Z. C. Chen, Newly Edited Chemistry of
Organic Synthesis, Chemical Industry Publisher, Beijing, 2005,
pp. 478–480. For examples of primary amides to acids, see: pp.
380–382.
[5] E. H. White, J. Am. Chem. Soc. 1954, 76, 4497–4498.
[6] E. H. White, C. A. Elliger, J. Am. Chem. Soc. 1967, 89, 165–
167.
(E)-PhCH=CHCOOMe (3): 1H NMR (400 MHz, CDCl3): δ = 7.70
(d, J = 16.0 Hz, 1 H), 7.52 (d, J = 3.6 Hz, 2 H), 7.39 (s, 3 H), 6.44
(d, J = 16.0 Hz, 1 H), 3.81 (s, 3 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 167.4, 144.8, 134.3, 130.2, 128.8, 128.0, 117.7,
51.7 ppm.
[7] W. J. Le Noble, E. H. White, P. M. Dzadzic, J. Am. Chem. Soc.
1976, 98, 4020–4221.
1
4-CH3-PhCOOMe (4): H NMR (400 MHz, CDCl3): δ = 7.94 (d,
J = 8.0 Hz, 2 H), 7.22 (d, J = 8.0 Hz, 2 H), 3.89 (s, 3 H), 2.39 (s,
3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 166.8, 143.2, 129.3,
128.8, 127.2, 51.6, 21.3 ppm.
[8] D. M. Shendage, R. Fröhlich, G. Haufe, Org. Lett. 2004, 6,
3675–3678.
[9] D. T. Glatzhofer, R. R. Roy, K. N. Cossey, Org. Lett. 2002, 4,
2349–2352.
[10] R. W. Darbeau, E. V. Perez, J. I. Sobieski, W. A. Rose, M. C.
Yates, B. J. Boese, N. R. Darbeau, J. Org. Chem. 2001, 66,
5679–5686.
[11] For ion-exchange resin uses in the conversion, see:W. L.
Greenlee, E. D. Thorsett, J. Org. Chem. 1981, 46, 5351–5353.
[12] a) H. A. Taylor, T. W. Davis, J. Phys. Chem. 1928, 32, 1467–
1480; b) E. Emmet Reid, Am. Chem. J. 1909, 41, 483–510.
[13] TiIV catalyzed conversion, see:L. E. Fisher, J. M. Caroon, S. R.
Stabler, S. Lundberg, S. Zaidi, Can. J. Chem. 1994, 72, 142.
[14] For chlorotrimethylsilane use in the transformation of amides
into esters, see: C.-H. Xue, F.-T. Luo, J. Chin. Chem. Soc. (Tai-
pei) 2004, 51, 359.
1
3-CH3-PhCOOMe (5): H NMR (400 MHz, CDCl3): δ = 7.89 (m,
2 H), 7.35 (m, 2 H), 3.90 (s, 3 H), 2.40 (s, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 167.0, 137.9, 133.4, 129.9, 128.0, 126.5,
51.7, 20.9 ppm.
4-HO-PhCOOMe (6): 1H NMR (400 MHz, CD3COCD3): δ = 9.21
(s, 1 H), 7.87 (d, J = 8.4 Hz, 2 H), 6.91 (d, J = 8.8 Hz, 2 H), 3.81
(s, 3 H) ppm. 13C NMR (100 MHz, CD3COCD3): δ = 166.9, 132.3,
122.3, 115.9, 51.8 ppm.
1
2-NH2-PhCOOMe (7): H NMR (400 MHz, CDCl3): δ = 7.85 (m,
1 H), 7.25 (m, 1 H), 6.64 (t, J = 8.0 Hz, 2 H), 3.86 (s, 3 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 168.5, 150.3, 133.9, 131.1, 116.6,
116.2, 110.7, 51.38 ppm.
[15] This compound is known and only 1H NMR and mass spectra
were recorded. The NMR spectroscopic data was compared
with the known data. Details of the reaction procedure are
summarized in ref.[11] in the Supporting Information.
[16] See Supporting Information for reaction details.
[17] W. L. Xiao, H. J. Zhu, Y. H. Shen, R. T. Li, S. H. Li, H. D.
Sun, Y. T. Zheng, R. R. Wang, Y. Lu, C. Wang, Q. T. Zeng,
Org. Lett. 2005, 7, 2145.
[18] H. J. Zhu, J. X. Jiang, S. Saobo, C. U. Pittman Jr, J. Org. Chem.
2005, 70, 261–267.
[19] L. C. Li, J. X. Jiang, J. Ren, Y. Ren, C. U. Pittman Jr, H. J. Zhu,
Eur. J. Org. Chem. 2006, 1981–1990.
1-Naph-CH2COOMe (8): 1H NMR (400 MHz, CDCl3): δ = 8.01
(d, J = 8.0 Hz, 1 H), 7.88 (d, J = 8.0 Hz, 1 H), 7.81 (d, J = 7.6 Hz,
1 H), 7.58–7.43 (m, 4 H), 4.09 (s, 2 H), 3.70 (s, 3 H) ppm. 13C
NMR (100 MHz, CDCl3): δ = 172.0, 133.8, 132.0, 130.5, 128.7,
128.0, 127.9, 126.4, 125.7, 125.4, 123.7, 52.1, 39.0 ppm.
1
PhCOOCH2CH3 (9): H NMR (400 MHz, CDCl3): δ = 8.04 (d, J
= 7.2 Hz, 2 H), 7.55 (t, J = 7.6 Hz, 1 H), 7.44 (t, J = 7.6 Hz, 2 H),
4.38 (q, J = 5.6 Hz, 2 H), 1.39 (t, J = 5.7 Hz, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 166.6, 132.8, 130.5, 129.5, 128.3, 60.9,
14.3 ppm.
[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, Gaussian 03 UserЈs
Reference, Gaussian Inc., Carnegie, PA, 2003..
[21] S. Mirertus, E. Scrocco, J. Tomasi, Chem. Phys. Lett. 1996, 255,
327.
PhCOOCH(CH3)2 (10): 1H NMR (400 MHz, CDCl3): δ = 8.02 (d,
J = 8.0 Hz, 2 H), 7.52 (t, J = 7.6 Hz, 1 H), 7.41 (t, J = 8.0 Hz, 2
H), 5.25 (m, 1 H), 1.36 (d, J = 6.0 Hz, 6 H) ppm. 13C NMR [22] M. Cossi, V. Barone, J. Mennucci, J. Tomasi, Chem. Phys. Lett.
1998, 286, 253.
(100 MHz, CDCl3): δ = 165.9, 132.5, 130.7, 129.3, 128.1, 68.2,
[23] J. Tomasi, B. Mennucci, E. Cances, J. Mol. Struct.: THEO-
CHEM 1999, 464, 211.
[24] M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys.
2002, 117, 43.
21.8 ppm.
MeOOCCH2CH(NH2)COOMe (11): 1H NMR (500 MHz,
CDCl3): δ = 3.78 (m, 1 H), 3.69 (s, 3 H), 3.65 (s, 3 H), 2.76 (dd, J
= 5.0 Hz, 16.5 Hz, 1 H), 2.66 (dd, J = 7.0 Hz, 17.2 Hz, 1 H) ppm.
MS: m/z = 161 [M]+.
[25]
[26]
C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1990, 94, 5523.
Eur. J. Org. Chem. 2007, 1026–1030
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1029