Phototransformation of Stilbene
FULL PAPER
Errors were measured by variations in fixed isotropic thermal parameters
from 0.1 to 0.5. Magnitudes of anisotropic thermal parameters (guest
molecules) were varied up to the maximum of 0.5, which is acceptable
for guest molecules in the cage.
[15] G. D. Enright, K. A. Udachin, I. L. Moudrakovski, J. A. Ripmeester,
J. Am. Chem. Soc. 2003, 125, 9896–9897.
[16] G. S. Ananchenko, K. A. Udachin, A. Dubes, J. A. Ripmeester, T.
Perrier, A. W. Coleman, Angew. Chem. 2006, 118, in press (DOI:
10.1002/ange.200503553); Angew. Chem Int. Ed. 2006, 45, in press
(DOI: 10.1002/anie.200503553).
[17] A. Dubes, K. A. Udachin, P. Shahgaldian, A. W. Coleman, J. A. Rip-
meester, New J. Chem. 2005, 29, 1141–1146.
[18] H. Meier, Angew. Chem. 1992, 104, 1425–1576; Angew. Chem. Int.
Ed. Engl. 1992, 31, 1399–1420.
Complex A: Data collected at 125 K up to 2q=56.68. Plates 0.50.5
0.2 mm crystallize in the tetragonal space group P4/nnc, with lattice di-
mensions of a=15.5151(12) c=22.708(4) , and unit-cell volume
5466.2(10) 3. Final residual factors are R1=0.0998, wR2=0.2672,
GOF=1.119 (56943 reflections measured, 3405 independent reflections,
2331 observed reflections I>2s(I), 265 parameters).
[19] R. Stçrmer, Ber. Dtsch. Chem. Ges. 1909, 42, 4865–4873.
[20] A. Smakula, Z. Phys. Chem. Abt. B 1934, 25, 90–98.
[21] G. Ciamician, P. Silber, Ber. Dtsch. Chem. Ges. 1902, 35, 4128–4133.
[22] J. D. Fulton, J. D. Dunitz, Nature 1947, 160, 161–162.
[23] a) C.-S. Tsai, J.-K. Wang, R. T. Skodje, J.-C. Lin, J. Am. Chem. Soc.
2005, 127, 10788–10789; b) F. Gessner, A. Olea, J. H. Lobaugh,
L. J. Johnston, J. C. Scaiano, J. Org. Chem. 1989, 54, 259–261.
[24] W. Herrmann, S. Wehrle, G. Wenz, Chem. Commun. 1997, 1709–
1710.
[25] M. S. Syamala, V. Ramamurthy, J. Org. Chem. 1986, 51, 3712–3715.
[26] M. S. Syamala, S. Devathan, V. Ramamurthy, J. Photochem. 1986,
34, 219–229.
[27] K. S. S. P. Rao, S. M. Hubig, J. N. Moorthy, J. K. Kochi, J. Org.
Chem. 1999, 64, 8098–8104.
[28] J. H. Williams, Acc. Chem. Res. 1993, 26, 593–598.
[29] C. A. Hunter, Chem. Soc. Rev. 1994, 23, 101–109.
[30] G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkov-
sky, R. H. Grubbs, J. Am. Chem. Soc. 1998, 120, 3641–3649.
[31] J. Quenneville, T. J. Martinez, J. Phys. Chem. B 2003, 107, 829–837.
[32] M. Traetteberg, E. B. Frantsen, J. Mol. Struct. 1975, 26, 69–76.
[33] I. L. Moudrakovski, A. Nossov, S. Lang, S. Breeze, C. I. Ratcliffe, B.
Simard, G. Santyr, J. A. Ripmeester, Chem. Mater. 2000, 12, 1181–
1183.
Complex B: Data collected at 125 K up to 2q=44.68. Plates 0.450.4
0.2 mm crystallize in the tetragonal space group P4/nnc, with lattice di-
mensions of a=15.5167(16) c=22.315(5) , and unit-cell volume
5372.7(14) 3. Final residual factors are R1=0.1247, wR2=0.3789,
GOF=1.951 (31920 reflections measured, 1728 independent reflections,
1115 observed reflections I>2s(I), 421 parameters).
Complex C: Data collected at 125 K up to 2q=56.88. Plates 0.50.35
0.35 mm crystallize in the monoclinic space group P21/n, with lattice di-
mensions of a=15.579(2) b=22.136(3) c=15.952(2) , b=90.965(2)8,
and unit-cell volume 5500.5(12) 3. Final residual factors are R1=0.1047,
wR2=0.3204, GOF=1.344 (61667 reflections measured, 13618 inde-
pendent reflections, 7254 observed reflections I>2s(I), 856 parameters).
Crystal data and structure refinement parameters are reported in the
Supporting Information. CCDC-281734, -281735, and -281736 contain
the supplementary crystallographic data for complexes A, B, and C, re-
spectively. These data can be obtained free of charge from The Cam-
request/cif.
Acknowledgements
[34] A. Nossov, D. V. Soldatov, J. A. Ripmeester, J. Am. Chem. Soc.
2001, 123, 3563–3568.
This workwas supported in part by the CNRS-NRC collaborative pro-
gram. G.A. thanks NSERC and NRC for support of a visiting fellowship.
[35] A. Dubes, I. L. Moudrakovski, P. Shahgaldian, A. W. Coleman, C. I.
Ratcliffe, J. A. Ripmeester, J. Am. Chem. Soc. 2004, 126, 6236–6237.
[36] E. B. Brower, G. D. Enright, K. A. Udachin, S. Lang, K. J. Ooms,
P. A. Halchuk, J. A. Ripmeester, Chem. Commun. 2003, 1416–1417.
[37] L. S. Kaanumalle, C. L. D. Gibb, B. C. Gibb, V. Ramamurthy, J. Am.
Chem. Soc. 2004, 126, 14366–14367.
[1] a) J.-M. Lehn, Supramolecular Chemistry: Concept and Perspectives,
VCH, Weinheim, 1995; b) Molecular and Supramolecular Photo-
chemistry, Vol. 8: Understanding and Manipulating Excited-State
Processes (Eds.: V. Ramamurthy, K. S. Schanze), Marcel Dekker,
New York, Basel, 2001.
[38] M. Yoshizawa, Y. Takeyama, T. Okano, M. Fujita, J. Am. Chem.
Soc. 2003, 125, 3243–3247.
[39] P. Shahgaldian, M. Cesario, P. Goreloff, A. W. Coleman, Chem.
Commun. 2002, 326–327.
[40] S. Paliwal, S. Geib, C. S. Wilcox, J. Am. Chem. Soc. 1994, 116, 4497–
4498.
[2] M. M. Conn, J. Rebek, Jr., Chem. Rev. 1997, 97, 1647–1668.
[3] A. Jasat, J. C. Sherman, Chem. Rev. 1999, 99, 931–967.
[4] L. R. MacGillivray, J. L. Atwood, Angew. Chem. 1999, 111, 1080–
1096; Angew. Chem. Int. Ed. 1999, 38, 1018–1033.
[41] H. Shechter, W. J. Link, G. V. D. Tiers, J. Am. Chem. Soc. 1963, 85,
1601–1605.
[42] a) F. D. Lewis, Acc. Chem. Res. 1979, 12, 152–158; b) F. D. Lewis,
Adv. Photochem. 1986, 13, 165–235.
[43] R. S. H. Liu, G. S. Hammond, Acc. Chem. Res. 2005, 38, 396–403.
[44] G. S. Hammond, J. Saltiel, A. A. Lamola, N. J. Turro, J. S. Bradshaw,
D. O. Cowan, R. C. Covnsell, V. Vogt, C. Dalton, J. Am. Chem. Soc.
1964, 86, 3197–3217.
[45] G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647–678.
[46] P. Shahgaldian, E. Da Silva, A. W. Coleman, B. Rather, M. J. Zawor-
otko, Int. J. Pharm. 2003, 253, 23–38.
[5] R. Warmuth, J. Yoon, Acc. Chem. Res. 2001, 34, 95–105.
[6] D. J. Cram, S. Karbach, Y. H. Kim, L. Baczynskyj, G. W. Kalley-
meyn, J. Am. Chem. Soc. 1985, 107, 2575–2576.
[7] J. Gabard, A. Collet, J. Chem. Soc. Chem. Commun. 1981, 1137–
1138.
[8] R. G. Chapman, J. C. Sherman, J. Am. Chem. Soc. 1995, 117, 9081–
9082.
[9] N. Chopra, J. C. Sherman, Angew. Chem. 1999, 111, 2109–2111;
Angew. Chem. Int. Ed. 1999, 38, 1955–1957.
[10] R. Wyler, J. de Mendoza, J. Rebek, Jr., Angew. Chem. 1993, 105,
1820–1822; Angew. Chem. Int. Ed. Engl. 1993, 32, 1699–1701.
[11] J. Rebek, Jr., Chem. Commun. 2000, 637–643.
[12] A. Shivanyuk, J. Rebek, Jr., Chem. Commun. 2001, 2374–2375.
[13] L. R. MacGillivray, J. L. Atwood, Nature 1997, 389, 469–472.
[14] a) G. D. Andreetti, U. Ungaro, A. Pochini. J. Chem. Soc. Chem.
Commun. 1979, 1005–1007; b) K. A. Udachin, G. D. Enright, P. O.
Brown, J. A. Ripmeester, Chem. Commun. 2002, 2162–2163;
c) C. L. D. Gibb, B. C. Gibb, J. Am. Chem. Soc. 2004, 126, 11408–
11409.
[47] P. Shahgaldian, A. W. Coleman, V. I. Kalchenko, Tetrahedron Lett.
2001, 42, 577–579.
[48] A. Schçnberg, G. O. Schenck, O.-A. Neumꢂller, Preparative Organic
Photochemistry, Springer, Berlin, 1968, p. 73.
Received: August 22, 2005
Published online: January 3, 2006
Chem. Eur. J. 2006, 12, 2441 – 2447
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2447