Organometallics
Article
ymethylfurfural. ChemSusChem 2011, 4, 59−64. (d) Janssens, N.;
Wee, L. H.; Bajpe, S.; Breynaert, E.; Kirschhock, C. E.; Martens, J. A.
Recovery and reuse of heteropolyacid catalyst in liquid reaction
medium through reversible encapsulation in Cu3(BTC)2 metal-
organic framework. Chem. Sci. 2012, 3, 1847−1850.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the NSF (DMR-1352065) and the University
of South Florida for financial support of this work.
(6) (a) Drout, R. J.; Robison, L.; Farha, O. K. Coordin. Catalytic
applications of enzymes encapsulated in metal-organic frameworks.
Coord. Chem. Rev. 2019, 381, 151−160. (b) Dhakshinamoorthy, A.;
Asiri, A. M.; Garcia, H. Formation of C-C and C-Heteroatom Bonds
by C-H Activation by Metal Organic Frameworks as Catalysts or
Supports. ACS Catal. 2019, 9 (2), 1081−1102. (c) Liang, J.; Huang,
Y. B.; Cao, R. Coordin. Metal−organic frameworks and porous
organic polymers for sustainable fixation of carbon dioxide into cyclic
carbonates. Coord. Chem. Rev. 2019, 378, 32−65. (d) Kirchon, A.;
Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals
to applications: a toolbox for robust and multifunctional MOF
materials. Chem. Soc. Rev. 2018, 47, 8611−8638. (e) Li, G.; Zhao, S.;
Zhang, Y.; Tang, Z. Metal-Organic Frameworks Encapsulating Active
Nanoparticles as Emerging Composites for Catalysis: Recent Progress
and Perspectives. Adv. Mater. 2018, 30, 1800702. (f) Drake, T.; Ji, P.;
Lin, W. Site Isolation in Metal−Organic Frameworks Enables Novel
Transition Metal Catalysis. Acc. Chem. Res. 2018, 51, 2129−2138.
(g) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y.
Applications of metal-organic frameworks in heterogeneous supra-
molecular catalysis. Chem. Soc. Rev. 2014, 43, 6011−6061. (h) Gu, Z.-
Y.; Park, J.; Raiff, A.; Wei, Z.; Zhou, H.-C. Metal-organic frameworks
as biomimetic catalysts. ChemCatChem 2014, 6, 67−75. (i) Aguila, B.;
Sun, Q.; Wang, X.; O’Rourke, E.; Al-Enizi, A. M.; Nafady, A.; Ma, S.
Lower Activation Energy for Catalytic Reactions through Host-Guest
Cooperation within Metal-Organic Frameworks. Angew. Chem., Int.
Ed. 2018, 57, 10107−10111.
(7) (a) Li, Z.; Schweitzer, N. M.; League, A. B.; Bernales, V.; Peters,
A. W.; Getsoian, A. B.; Wang, T. C.; Miller, J. T.; Vjunov, A.; Fulton,
J. L.; et al. Sintering-resistant single-site nickel catalyst supported by
metal-organic framework. J. Am. Chem. Soc. 2016, 138, 1977−1982.
(b) Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.;
Zhao, H.; Tang, Z. Metal-organic frameworks as selectivity regulators
for hydrogenation reactions. Nature 2016, 539, 76−80.
(8) Xiao, D. J.; Oktawiec, J.; Milner, P. J.; Long, J. R. Pore
Environment Effects on Catalytic Cyclohexane Oxidation in
Expanded Fe2(dobdc) Analogues. J. Am. Chem. Soc. 2016, 138,
14371−14379.
(9) Li, B.; Zhang, Y.; Ma, D.; Ma, T.; Shi, Z.; Ma, S. Metal-Cation-
Directed de Novo Assembly of a Functionalized Guest Molecule in
the Nanospace of a Metal-Organic Framework. J. Am. Chem. Soc.
2014, 136, 1202−1205.
(10) (a) Brown, C. J.; Miller, G. M.; Johnson, M. W.; Bergman, R.
G.; Raymond, K. N. High-turnover supramolecular catalysis by a
protected ruthenium (II) complex in aqueous solution. J. Am. Chem.
Soc. 2011, 133, 11964−11966. (b) Wang, Z. J.; Brown, C. J.;
Bergman, R. G.; Raymond, K. N.; Toste, F. D. Hydroalkoxylation
catalyzed by a gold (I) complex encapsulated in a supramolecular
host. J. Am. Chem. Soc. 2011, 133, 7358−7360. (c) Wang, Z. J.; Clary,
K. N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A
supramolecular approach to combining enzymatic and transition
metal catalysis. Nat. Chem. 2013, 5, 100.
(11) (a) Genna, D. T.; Wong-Foy, A. G.; Matzger, A. J.; Sanford, M.
S. Heterogenization of homogeneous catalysts in metal−organic
frameworks via cation exchange. J. Am. Chem. Soc. 2013, 135, 10586−
10589. (b) Genna, D. T.; Pfund, L. Y.; Samblanet, D. C.; Wong-Foy,
A. G.; Matzger, A. J.; Sanford, M. S. Rhodium hydrogenation catalysts
supported in metal organic frameworks: influence of the framework
on catalytic activity and selectivity. ACS Catal. 2016, 6, 3569−3574.
(12) Grigoropoulos, A.; Whitehead, G. F. S.; Perret, N.; Katsoulidis,
A. P.; Chadwick, F. M.; Davies, R. P.; Haynes, A.; Brammer, L.;
Weller, A. S.; Xiao, J.; Rosseinsky, M. J. Encapsulation of an
organometallic cationic catalyst by direct exchange into an anionic
MOF. Chem. Sci. 2016, 7, 2037−2050.
REFERENCES
■
(1) (a) Madhavan, N.; Jones, C. W.; Weck, M. Rational approach to
polymer-supported catalysts: synergy between catalytic reaction
mechanism and polymer design. Acc. Chem. Res. 2008, 41, 1153−
1165. (b) Baleizao, C.; Garcia, H. Chiral salen complexes: an overview
to recoverable and reusable homogeneous and heterogeneous
catalysts. Chem. Rev. 2006, 106, 3987−4043. (c) Ye, R.;
Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A.
Supported dendrimer-encapsulated metal clusters: toward hetero-
genizing homogeneous catalysts. Acc. Chem. Res. 2017, 50, 1894−
1901.
́
(2) (a) Trzeciak, A. M.; Ziołkowski, J. J. Monomolecular, nanosized
and heterogenized palladium catalysts for the Heck reaction. Coord.
Chem. Rev. 2007, 251, 1281−1293. (b) Wang, Z.; Chen, G.; Ding, K.
Self-supported catalysts. Chem. Rev. 2009, 109, 322−359. (c) Jain, K.
R.; Herrmann, W. A.; Kuhn, F. E. Synthesis and catalytic applications
̈
of chiral monomeric organomolybdenum (VI) and organorhenium
(VII) oxides in homogeneous and heterogeneous phase. Coordin.
Coord. Chem. Rev. 2008, 252, 556−568. (d) Lu, J.; Toy, P. H. Organic
polymer supports for synthesis and for reagent and catalyst
immobilization. Chem. Rev. 2009, 109, 815−838.
(3) (a) Westerhaus, F. A.; Jagadeesh, R. V.; Wienhofer, G.; Pohl, M.-
M.; Radnik, J.; Surkus, A.-E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen,
M.; et al. Heterogenized cobalt oxide catalysts for nitroarene
reduction by pyrolysis of molecularly defined complexes. Nat.
Chem. 2013, 5, 537−543. (b) Ganga, V. S. R.; Dabbawala, A. A.;
Munusamy, K.; Abdi, S. H.; Kureshy, R. I.; Khan, N. H.; Bajaj, H. C.
Rhodium complexes supported on nanoporous activated carbon for
selective hydroformylation of olefins. Catal. Commun. 2016, 84, 21−
24. (c) Gogoi, P.; Dutta, A. K.; Saikia, S.; Borah, R. Heterogenized
hybrid catalyst of 1-sulfonic acid-3-methyl imidazolium ferric chloride
over NaY zeolite for one-pot synthesis of 2-amino-4-arylpyrimidine
derivatives: A viable approach. Appl. Catal., A 2016, 523, 321−331.
(d) Yang, H.; Luo, M.; Luo, L.; Wang, H.; Hu, D.; Lin, J.; Wang, X.;
Wang, Y.; Wang, S.; Bu, X.; Feng, P.; Wu, T. Highly selective and
rapid uptake of radionuclide cesium based on robust zeolitic
chalcogenide via stepwise ion-exchange strategy. Chem. Mater. 2016,
28, 8774−8780. (e) Ratnasamy, P.; Srinivas, D. Selective oxidations
over zeolite-and mesoporous silica-based catalysts: Selected examples.
Catal. Today 2009, 141, 3−11. (f) Ishida, T.; Nagaoka, M.; Akita, T.;
Haruta, M. Deposition of gold clusters on porous coordination
polymers by solid grinding and their catalytic activity in aerobic
oxidation of alcohols. Chem. - Eur. J. 2008, 14, 8456−8460.
́ ́
(4) (a) Lemus-Yegres, L. J.; Such-Basanez, I.; Roman-Martínez, M.
̃
C.; De Lecea, C. S. M. Catalytic properties of a Rh-diamine complex
anchored on activated carbon: Effect of different surface oxygen
groups. Appl. Catal., A 2007, 331, 26−33. (b) Mignoni, M. L.; de
Souza, M. O.; Pergher, S. B.; de Souza, R. F.; Bernardo-Gusmao, K.
̃
Nickel oligomerization catalysts heterogenized on zeolites obtained
using ionic liquids as templates. Appl. Catal., A 2010, 374, 26−30.
(c) Zhang, Y.; Riduan, S. N. Functional porous organic polymers for
heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083−2094.
(5) (a) Chen, L.; Chen, H.; Luque, R.; Li, Y. Metal-organic
framework encapsulated Pd nanoparticles: Towards advanced
heterogeneous catalysts. Chem. Sci. 2014, 5, 3708−3714. (b) Lu,
G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.;
Wang, X.; Han, S.; Liu, X.; et al. Imparting functionality to a metal−
organic framework material by controlled nanoparticle encapsulation.
Nat. Chem. 2012, 4, 310−316. (c) Zhang, Y.; Degirmenci, V.; Li, C.;
Hensen, E. J. Phosphotungstic acid encapsulated in metal-organic
framework as catalysts for carbohydrate dehydration to 5-hydrox-
E
Organometallics XXXX, XXX, XXX−XXX