16
A.S. Singh et al. / Catalysis Communications 35 (2013) 11–16
[9] N. Marion, S.P. Nolan, Accounts of Chemical Research 41 (2008) 1440–1449.
4. Conclusion
[10] G.W. Kabalka, V. Namboodiri, L. Wang, Chemical Communications (2001) 775.
[11] M. Mondal, U. Bora, Green Chemistry 14 (2012) 1873–1876.
[12] X. Liu, A. Wang, X. Yang, T. Zhang, C.Y. Mou, D.S. Su, J. Li, Chemistry of Materials 21
(2009) 410–418.
[13] F.X. Felpin, T. Ayad, S. Mitra, European Journal of Organic Chemistry 12 (2006)
2679–2690.
[14] B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, Journal of the
American Chemical Society 124 (2002) 14127–14136.
[15] Y. Yamada, C.K. Tsung, W. Huang, Z. Huo, S.E. Habas, T. Soejima, C.E. Aliaga, G.A.
Somorjai, P. Yang, Nature Chemistry 3 (2011) 372.
In conclusion, we have developed a highly efficient magnetic catalyst
of Pd incorporated ZnFe2O4, suitable for Suzuki and Heck cross-coupling
reactions. The reactions can be carried out under ligand free and aerobic
conditions with low catalyst loading. The catalyst was easily recovered
by magnetic separation and showed high catalytic activity. Hence, Pd–
ZnFe2O4 catalyst can be considered as another interesting example in
heterogeneous catalysis.
[16] C.H. Tu, A.Q. Wang, M.Y. Zheng, X.D. Wang, T. Zhang, Applied Catalysis A 297
(2006) 40–47.
[17] S. Mandal, D. Roy, R.V. Chaudhari, M. Sastry, Chemistry of Materials 16 (2004)
3714–3724.
Acknowledgments
[18] R.S. Underhill, G. Liu, Chemistry of Materials 12 (2000) 3633–3641.
[19] C.W. Lim, I.S. Lee, Nano Today 5 (2010) 412–434.
[20] J. Ge, Q. Zhang, T. Zhang, Y. Yin, Angewandte Chemie International Edition 47
(2008) 8924–8928.
[21] Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Zhao, Journal of
the American Chemical Society 132 (2010) 8466–8473.
[22] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chemical Re-
views 111 (2011) 3036–3075.
[23] B. Baruwati, D. Guin, S.V. Manorama, Organic Letters 9 (2007) 5377–5380.
[24] M. Zhu, G. Diao, Journal of Physical Chemistry C 115 (2011) 24743–24749.
[25] Z. Gao, Y. Feng, F. Cui, Z. Hua, J. Zhou, Y. Zhu, J. Shi, Journal of Molecular Catalysis
A: Chemical 336 (2011) 51–57.
Financial support from Green Tech. U.P.E. is gratefully acknowledged.
Appendix A. Supplementary data
Supplementary data to this article can be found online at http://
References
[26] K.K. Senapati, S. Roy, C. Borgohain, P. Phukan, Journal of Molecular Catalysis A:
Chemical 352 (2012) 128–134.
[27] P. Li, L. Wang, L. Zhang, G.W. Wang, Advanced Synthesis and Catalysis 354 (2012)
1307–1318.
[28] C. Luo, Y. Zhang, Y. Wang, Journal of Molecular Catalysis A: Chemical 229 (2005)
7–12.
[29] B.D. Cullity, Elements of X-ray Diffraction, Addision-Wesely, London, 1959,
pp. 261–262.
[1] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Journal of the American Chemical Society
128 (2006) 5279–5282.
[2] S. Shylesh, V. Schunemann, W.R. Thiel, Angewandte Chemie International Edition
49 (2010) 3428–3459.
[3] A. Cao, G. Veser, Nature Materials 9 (2010) 75–81.
[4] C.T. Campbell, S.C. Parker, D.E. Starr, Science 298 (2002) 811–814.
[5] N. Miyaura, A. Suzuki, Chemical Reviews 95 (1995) 2457–2483.
[6] R.F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London,
1985.
[30] M. Niederberge, N. Pinna, Metal Oxide Nanoparticles in Organic Solvents: Synthe-
sis Formation, Assembly and Application, Springer, London, 2009, pp. 176–177.
[7] C.A. Fleckenstein, H. Plenio, Chemical Society Reviews 39 (2010) 694–711.
[8] C. Amatore, A. Jutand, Coordination Chemistry Reviews 178 (1998) 511–528.