efforts to prepare the catalysts [Bi(OTf)3, Nafion-H, yttria-
zirconia, AlPW12O40, and Mn(haacac)Cl]; (v) the lack of atom
economy (use of excess of acetylating agents); (vi) stringent
reaction conditions and the requirement of longer reaction times;
and (vii) in many cases, the reported acylation methodolo-
gies are applicable to alcohols only and are not suitable for
acid-sensitive substrates. Thus, there is a need for the develop-
ment of a mild and cost-effective catalyst for the acylation
reaction.
Magnesium Bistrifluoromethanesulfonimide as a
New and Efficient Acylation Catalyst
Asit K. Chakraborti* and Shivani
Department of Medicinal Chemistry, National Institute of
Pharmaceutical Education and Research (NIPER),
Sector 67, S. A. S. Nagar 160 062, Punjab, India
In continuation of our efforts for the development of newer
and efficient methods for acylation,4 we report that Mg(NTf2)2
is a new, efficient, and easily accessible acylation catalyst.
While designing the catalyst, we thought that a metal salt
derived from a strong protic acid should be an ideal contender.
The large negative H0 value of -14.1 for TfOH5 makes TfOH
the strongest protic acid, and thus metal triflates have drawn
the attention as acylation catalysts.3 However, TfOH is often
liberated from metal triflates during the triflate-catalyzed
acylation reactions and may be the actual catalytic agent.6 The
in situ generation of TfOH might be the reason for the potential
side reactions (e.g., dehydration, rearrangement, etc.) with acid-
sensitive substrates. Thus, metal-triflate-catalyzed acylation
reactions are often carried out at low temperatures (-8 to -60
°C) and in the presence of an excess of the acetylating agents.
This has led us4a-c and others2d,f,g to develop acylation catalysts
derived from HClO4 as it is weaker than TfOH. However, the
potential hazard associated with HClO4 and metal perchlorates7
ReceiVed March 9, 2006
Magnesium bistrifluoromethanesulfonimide catalyzed the
acetylation of phenols, alcohols, and thiols under solvent-
free conditions at room temperature and in short times.
Electron-deficient and sterically hindered phenols provided
excellent yields. The catalyst was found to be general for
acylation with other anhydrides, such as propionic, isobutyric,
pivalic, chloroacetic, and benzoic anhydrides. The rate of
acylation was influenced by the electronic and steric factors
associated with the anhydride. The reaction with less
electrophilic anhydrides (e.g., chloroacetic and benzoic
anhydrides) required higher temperature (∼80 °C). Chemose-
lective acetylation, pivalation, and benzoylation took place
with acid-sensitive alcohols without any competitive dehy-
dration/rearrangement.
(2) (a) Nafion-H: Kumareswaran, R.; Pachamuthu, K.; Vankar, Y. D.
Synlett 2000, 1651-1654. (b) Yttria-zirconia: Kumar, P.; Pandey, R. K.;
Bodas, M. S.; Dongare, M. K. Synlett 2001, 206-209. (c) NBS: Karimi,
B.; Seradj, H. Synlett 2001, 519-520. (d) LiClO4: Nakae, Y.; Kusaki, I.;
Sato, T. Synlett 2001, 1581-1586. (e) Ionic liquid: Forsyth, S. A.;
MacFarlane, D. R.; Thompson, R. J.; Itzstein, M. V. Chem. Commun. 2002,
714-715. (f) Mg(ClO4)2: Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni,
E.; Massaccesi, M.; Rinaldi, S.; Sambri, L. Synlett 2003, 39-42. (g) Zn-
(ClO4)2: Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi,
M.; Sambri, L. Eur. J. Org. Chem. 2003, 4611-4617. (h) AlPW12O40:
Firouzabadi, H.; Iranpoor, N.; Nowrouzi, F.; Amani, K. Chem. Commun
2003, 764-765. (i) RuCl3: De, S. K. Tetrahedron Lett. 2004, 45, 2919-
2922. (j) ZrOCl2: Ghosh, R.; Maiti, S.; Chakraborty, A. Tetrahedron Lett.
2004, 45, 147-151. (k) BiOCl: Ghosh, R.; Maiti, S.; Chakraborty, A.
Tetrahedron Lett. 2004, 45, 6775-6778. (l) Al2O3: Yadav, V. K.; Babu,
K. G. J. Org. Chem. 2004, 69, 577-580. (m) MoOCl2: Chen, C.-T.; Kuo,
J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y. J.
Org. Chem. 2005, 70, 1188-1197. (n) Mn(haacac)2Cl: Salavati-Niasari,
M.; Hydrazadeh, S.; Amiri, A.; Salavati, S. J. Mol. Catal. A 2005, 231,
191-195.
(3) (a) Cu(OTf)2: Chandra, K. L.; Saravanan, P.; Singh, R. K.; Singh,
V. K. Tetrahedron 2002, 58, 1369-1374. (b) In(OTf)3: Chauhan, K. K.;
Frost, C. G.; Love, I.; Waite, D. Synlett 1999, 1743-1744. (c) Bi(OTf)3:
Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. J. Org. Chem. 2001, 66,
8926-8934. (d) Ce(OTf)3: Dalpozzo, R.; De Nino, A.; Maiuolo, L.;
Procopio, A.; Nardi, M.; Bartoli, G.; Romeo, R. Tetrahedron Lett. 2003,
44, 5621-5624. (e) LiOTf: Karimi, B.; Maleki, J. J. Org. Chem. 2003,
68, 4951-4954. (f) Er(OTf)3: Procopio, A.; Dalpozzo, R.; De Nino, A.;
Maiuolo, L.; Russo, B.; Sindona, G. AdV. Synth. Catal. 2005, 346, 1465-
1470.
In the synthesis of multifunctional targets, one often needs
to carry out a reaction at a particular functional group in the
presence of other functional groups, such as phenol, alcohol,
and thiol, that are sensitive to the desired chemical transforma-
tion. Thus, the protection of phenols, alcohols, and thiols is one
of the most frequently employed reactions in organic synthesis
and is normally achieved by acylation with anhydrides in the
presence of suitable catalyst. Various organic (e.g., DMAP and
Bu3P) and inorganic (e.g., halides and triflates of transition and
rare earth metals) catalysts have been employed for this
purpose.1 The recent efforts for the development of newer
methods highlight the importance of heteroatom acylation.2,3
The reported methodologies suffer from one or more of the
following disadvantages: (i) potential health hazard [DMAP is
highly toxic (e.g., intravenous LD50 in the rat ) 56 mg/kg) and
Bu3P is flammable (flash point ) 37 °C), need to use
halogenated solvents]; (ii) difficulty in handling (Bu3P undergoes
aerial oxidation, and triflates are moisture sensitive); (iii) high
cost of the catalysts (e.g., triflates); (iv) requirement of special
(4) (a) HClO4-SiO2: Chakraborti, A. K.; Gulhane, R. Chem. Commun.
2003, 1896-1897. (b) BiOClO4: Chakraborti, A. K.; Gulhane, R.; Shivani.
Synlett 2003, 1805-1808. (c) Mg(ClO4)2: Chakraborti, A. K.; Sharma, L.;
Gulhane, R.; Shivani. Tetrahedron 2003, 59, 7661-7668. (d) HBF4-
SiO2: Chakraborti, A. K.; Gulhane, R. Tetrahedron Lett. 2003, 44, 3521-
3525. (e) Cu(BF4)2: Chakraborti, A. K.; Gulhane, R.; Shivani. Synthesis
2004, 111-115. (f) InCl3: Chakraborti, A. K.; Gulhane, R. Tetrahedron
Lett. 2003, 44, 6749-6753. (g) ZrCl4: Chakraborti, A. K.; Gulhane, R.
Synlett 2004, 627-630.
* To whom correspondence should be addressed. Fax: 91 (0)172 2214692.
(1) Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic
(5) Olah, G. A.; Prakash, G. K. S. Superacids; Wiley: New York, 1985.
(6) Dumeunier, R.; Marko´, I. E. Tetrahedron Lett. 2004, 45, 825-882.
Synthesis, 3rd ed.; John Wiley and Sons: New York, 1999.
10.1021/jo0605142 CCC: $33.50 © 2006 American Chemical Society
Published on Web 06/20/2006
J. Org. Chem. 2006, 71, 5785-5788
5785