4
Tetrahedron Letters
13. (a) Sakai, N.; Asama, S.; Anai, S.; Konakahara, T. Tetrahedron
References and notes
2014, 70, 2027-2033. (b) Sakai, N.; Fujii, K.; Nabeshima, S.;
Ikeda, R.; Konakahara, T. Chem. Commun. 2010, 46, 3173-3175.
(c) Sakai, N.; Fujii, K.; Konakahara, T. Tetrahedron Lett. 2008,
49, 6873-6875. (d) Sakai, N.; Moriya, T.; Konakahara, T. J. Org.
Chem. 2007, 72, 5920-5922.
1.
(a) Glasby, J. S. Encyclopedia of the Alkaloids, Plenum Press:
New York, 1975. (b) Suvire, F. D.; Sortino, M.; Kouznetsov, V.
V.; Vargas M, L. Y.; Zacchino, S. A.; Cruz, U. M.; Enriz, R. D.
Biorg. Med. Chem. 2006, 14, 1851-1862. (c) Yu, M. J.; McCowan,
J. R.; Phebus, L. A.; Towner, R. D.; Ho, P. P. K.; Keith, P. T.;
Luttman, C. A.; Saunders, R. D.; Ruterbories, K. J. J. Med. Chem.
1993, 36, 1262-1271.
14. For selected examples of an indium(III) compound has been
widely utilized for
a variety of reductive functional group
transformations with a hydrosilane: (a) Baba, A.; Shibata, I. Chem.
Rec. 2005, 5, 323-335. (b) Pehlivan, L.; Métay, E.; Delbrayelle,
D.; Mignani, G.; Lemaire, M. Eur. J. Org. Chem. 2012, 4689-
4693. (c) Tsuchimoto, T.; Wagatsuma, T.; Aoki, K.; Shimotori, J.
Org. Lett. 2009, 11, 2129-2132. (d) Miura, K.; Tomita, M.;
Yamada, Y.; Hosomi, A. J. Org. Chem. 2006, 72, 787-792. (e)
Miura, K.; Yamada, Y.; Tomita, M.; Hosomi, A. Synlett 2004,
1985-1989. (f) Onishi, Y.; Ogawa, D.; Yasuda, M.; Baba, A. J.
Am. Chem. Soc. 2002, 124, 13690-13691. (g) Yasuda, M.; Onishi,
Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org. Chem. 2001, 66, 7741-
7744.
2.
3.
Larock, R. C. Comprehensive Organic Transformations, 2nd Ed.,
John Wiley & Sons; New York, 1999.
(a) Larson, G. L. Ionic and Organometallic-Catalyzed
Organosilane Reductions, John Wiley & Sons; New Jersey, 2010.
(b) Addis, D.; Das, S.; Junge, K.; Beller, M. Angew. Chem. Int.
Ed. 2011, 50, 6004-6011.
4.
For selected review of a metal-catalyzed reduction of amides with
H2, see: Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res.
Dev. 2014, 18, 289-302.
15. General procedure for the indium-catalyzed reductive preparation
of secondary amines: To a 5 mL screw-capped vial containing a
freshly distilled toluene (0.6 mL) were successively added under
N2 secondary amide (0.6 mmol), InI3 (0.030 mmol, 15 mg) and
1,1,3,3-tetramethyldisiloxane (1.80 mmol, 318 L). After the vial
was sealed with a cap that contained a PTFE septum, the mixture
was stirred at 100 ˚C (bath temperature), and monitored by GC
analysis. After completion of the reaction, the reaction was
quenched with H2O. The aqueous layer was extracted with CHCl3
(6 mL x 3), the organic phases were dried over anhydrous Na2SO4,
filtered and evaporated under reduced pressure. The crude product
was purified by silica gel chromatography (hexane/AcOEt = 9/1)
to give the corresponding secondary amine. If necessary, the
5.
6.
7.
Igarashi, M.; Fuchikami, T. Tetrahedron Lett. 2001, 42, 1945-
1947.
Ohta, T.; Kamiya, M.; Nobutomo, M.; Kusui, K.; Furukawa, I.
Bull. Chem. Soc. Jpn. 2005, 78, 1856-1861.
For a quite recent review, see: (a) Nagashima, H. Synlett 2015, 26,
866-890. (b) Hanada, S.; Ishida, T.; Motoyama, Y.; Nagashima, H.
J. Org. Chem. 2007, 72, 7551-7559.
(a) Das, S.; Join, B.; Junge, K.; Beller, M. Chem. Commun. 2012,
48, 2683-2685. (b) Das, S.; Addis, D.; Junge, K.; Beller, M. Chem.
Eur. J. 2011, 17, 12186-12192. (c) Li, Y.; Molina de La Torre, J.
A.; Grabow, K.; Bentrup, U.; Junge, K.; Zhou, S.; Brückner, A.;
Beller, M. Angew. Chem. Int. Ed. 2013, 52, 11577-11580.
Cheng, C.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11304-
11307.
8.
9.
isolated product was subjected to
a
gel permeation
chromatography with chloroform as an eluent. All secondary
amine prepared by this procedure were known compounds, and
the characterization was confirmed by NMR spectra shown in the
literature. For detailed procedure and spectra, see supporting
information.
10. Pelletier, G.; Bechara, W. S.; Charette, A. B. J. Am. Chem. Soc.
2010, 132, 12817-12819.
11. (a) Blondiaux, E.; Cantat, T. Chem. Commun. 2014, 50, 9349-
9352. (b) Chadwick, R. C.; Kardelis, V.; Lim, P.; Adronov, A. J.
Org. Chem. 2014, 79, 7728-7733.
16. See supporting information.
12. For selected papers of a metal-promoted reduction of tertiary
amides with a hydrosilane, see: (a) Kovalenko, O. O.; Volkov, A.;
Adolfsson, H. Org. Lett. 2015, 17, 446-449. (b) Bornschein, C.;
Lennox, A. J. J.; Werkmeister, S.; Junge, K.; Beller, M. Eur. J.
Org. Chem. 2015, 1915-1919. (c) Pisiewicz, S.; Junge, K.; Beller,
M. Eur. J. Inorg. Chem. 2014, 2345-2349. (d) Xie, W.; Zhao, M.;
Cui, C. Organometallics 2013, 32, 7440-7444. (e) Zhou, S.;
Junge, K.; Addis, D.; Das, S.; Beller, M. Angew. Chem. Int. Ed.
2009, 48, 9507-9510. (f) Barbe, G.; Charette, A. B. J. Am. Chem.
Soc. 2008, 130, 18-19. (g) Motoyama, Y.; Mitsui, K.; Ishida, T.;
Nagashima, H. J. Am. Chem. Soc. 2005, 127, 13150-13151. (h)
Matsubara, K.; Iura, T.; Maki, T.; Nagashima, H. J. Org. Chem.
2002, 67, 4985-4988. (i) Kuwano, R.; Takahashi, M.; Ito, Y.
Tetrahedron Lett. 1998, 39, 1017-1020. (j) Bower, S.; Kreutzer,
K. A.; Buchwald, S. L. Angew. Chem. Int. Ed. 1996, 35, 1515-
1516. (k) Pedregal, C.; Ezquerra, J.; Escribano, A.; Carreno, M.
C.; García Ruano, J. L. Tetrahedron Lett. 1994, 35, 2053-2056.
17. Although Cantat's group reported the formation of dibenzylamine
from N-benzylbenzamide, Adronov et al confirmed no formation
of the same secondary amine under almost the same conditions.
Both opposite results confused us to discuss our result, see ref 11a
and 11b.
Supplementary Material
1
Copies of the H and 13C NMR spectra of the secondary
amines that were produced by this procedure were supplied.