ACS Catalysis
Research Article
role suggested in this study. Besides this reaction, Pd−Zn
bimetallic catalysts, including Pd/ZnO, have been widely
examined and have shown to be effective for various catalytic
REFERENCES
■
(
1) Lawrence, S. A. Amines: synthesis, properties and applications;
Cambridge University Press: Cambridge, U.K., 2004.
2) He, L.; Lou, X. B.; Ni, J.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K.
32−37
reactions, such as selective hydrogenation,
water−gas shift
(
3
8−40
41−43
reaction,
partial oxidation of methanol,
hydro-
N. Chem. - Eur. J. 2010, 16, 13965−13969.
(3) Shimizu, K.; Nishimura, M.; Satsuma, A. ChemCatChem 2009, 1,
497−503.
44
45
formylation of ethylene, and esterification. However, no
reactions involving nitrogen have been reported, highlighting
the novelty of PdZn catalysis for N-alkylation of amines.
(4) Likhar, P. R.; Arundhathi, R.; Kantam, M. L.; Prathima, P. S. Eur.
J. Org. Chem. 2009, 2009, 5383−5389.
(
5) He, W.; Wang, L. D.; Sun, C. L.; Wu, K. K.; He, S. B.; Chen, J. P.;
CONCLUSION
■
Wu, P.; Yu, Z. K. Chem. - Eur. J. 2011, 17, 13308−13317.
(6) Corma, A.; Rodenas, T.; Sabater, M. J. Chem. - Eur. J. 2010, 16,
254−260.
In this study, the catalytic performance of Pd-based
intermetallic compounds in alcohol-based N-alkylation of
amines was investigated. PdZn/Al O was observed as a highly
(7) Shimizu, K.; Imaiida, N.; Kon, K.; Hakim Siddiki, S. M. A.;
Satsuma, A. ACS Catal. 2013, 3, 998−1005.
2
3
efficient heterogeneous catalyst with high catalytic performance,
a wide substrate scope, and high atom efficiency. The surface of
intermetallic PdZn is capable of selective activation of alcohols
over amines, which is necessary for alkylation of reactive amines
such as benzylamine. The unique catalytic performance of
PdZn originates from the fundamental change in the C−H
activation property and adsorption affinity of the substrates,
allowing preferential activation of alcohols over amines. The
incorporation of the oxophilic Zn into the azophilic Pd at an
atomic level and ordered fashion plays a significant role in this
drastic change, which has rarely been observed using conven-
tional monometallic or supported catalysts. To the best of our
knowledge, this is the first report of the rationalization of this
kind of selective activation at an atomic scale. Thus, the results
obtained provide not only an efficient catalytic system for N-
alkylation of amines but also an innovative concept for selective
molecular recognition and activation.
(
8) Peeters, A.; Claes, L.; Geukens, I.; Stassen, I.; De Vos, D. Appl.
Catal., A 2014, 469, 191−197.
(
(
(
(
3
(
9) Yan, T.; Feringa, B.; Barta, K. Nat. Commun. 2014, 5, 5602−5602.
10) Yan, T.; Feringa, B. L.; Barta, K. ACS Catal. 2016, 6, 381−388.
11) Ma, X.; Su, C.; Xu, Q. Top. Curr. Chem. 2016, 374, 1−74.
12) Furukawa, S.; Suga, A.; Komatsu, T. Chem. Commun. 2014, 50,
277−3280.
13) Furukawa, S.; Suga, A.; Komatsu, T. ACS Catal. 2015, 5, 1214−
1222.
(14) Furukawa, S.; Yoshida, Y.; Komatsu, T. ACS Catal. 2014, 4,
1441−1450.
(
15) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.;
Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002,
4, 2717−2744.
16) Vanderbilt, D. Phys. Rev. B: Condens. Matter Mater. Phys. 1990,
1
(
4
(
1, 7892−7895.
17) Zhang, Y. K.; Yang, W. T. Phys. Rev. Lett. 1998, 80, 890−890.
(
18) Hammer, B.; Hansen, L. B.; Norskov, J. K. Phys. Rev. B: Condens.
Matter Mater. Phys. 1999, 59, 7413−7421.
ASSOCIATED CONTENT
(19) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188−5192.
■
(20) Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49,
*
S
Supporting Information
2
25−232.
21) Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.;
Andzelm, J. Comput. Mater. Sci. 2003, 28, 250−258.
22) Armbruster, M.; Behrens, M.; Fottinger, K.; Friedrich, M.;
Gaudry, E.; Matam, S. K.; Sharma, H. R. Catal. Rev.: Sci. Eng. 2013, 55,
89−367.
23) Massalski, T. B.; Okamoto, H.; Subramanian, P.; Kacprzak, L.;
(
(
Reaction profile, recycling test, kinetic studies, and
optimized structures (PDF)
2
(
Scott, W. W. Binary alloy phase diagrams; American Society for Metals
International: Materials Park, OH, 1986; Vol. 1.
AUTHOR INFORMATION
■
*
Corresponding Authors
(
24) Slater, J. C. J. Chem. Phys. 1964, 41, 3199−3204.
Department of Chemistry, School of Science, Tokyo Institute
phone: +81-3-5734-2602. Fax: +81-3-5734-2758.
Department of Chemistry, School of Science, Tokyo Institute
(25) Rainer, D. R.; Wu, M. C.; Mahon, D. I.; Goodman, D. W. J. Vac.
Sci. Technol., A 1996, 14, 1184−1188.
1
(26) Lebarbier, V.; Dagle, R.; Conant, T.; Vohs, J. M.; Datye, A. K.;
Wang, Y. Catal. Lett. 2008, 122, 223−227.
(
27) Zhang, C. J.; Hu, P. J. Chem. Phys. 2001, 115, 7182−7186.
*
(28) Chen, Z. X.; Neyman, K. M.; Lim, K. H.; Rosch, N. Langmuir
2
(
004, 20, 8068−8077.
29) Jiang, R. B.; Guo, W. Y.; Li, M.; Fu, D. L.; Shan, H. H. J. Phys.
1
phone: +81-3-5734-3532. Fax: +81-3-5734-2758.
Chem. C 2009, 113, 4188−4197.
Present Address
S.F.: Institute for Catalysis, Hokkaido University, N-21, W-10,
Sapporo 001-0021, Japan.
(30) Gu, X. K.; Li, W. X. J. Phys. Chem. C 2010, 114, 21539−21547.
†
(31) Liu, J. H.; Lv, C. Q.; Guo, Y.; Wang, G. C. Appl. Surf. Sci. 2013,
2
(
71, 291−298.
32) Sarkany, A.; Zsoldos, Z.; Furlong, B.; Hightower, J. W.; Guczi, L.
Notes
J. Catal. 1993, 141, 566−582.
(33) Iwasa, N.; Yoshikawa, M.; Arai, M. Phys. Chem. Chem. Phys.
The authors declare no competing financial interest.
2
(
2
(
002, 4, 5414−5420.
34) Iwasa, N.; Takizawa, M.; Arai, M. Appl. Catal., A 2005, 283,
55−263.
35) Lenarda, M.; Casagrande, M.; Moretti, E.; Storaro, L.; Frattini,
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI Grant 26820350.
We deeply appreciate the Center for Advanced Materials
Analysis of the Tokyo Institute of Technology for the aid of
TEM observation.
R.; Polizzi, S. Catal. Lett. 2007, 114, 79−84.
(36) Semagina, N.; Grasemann, M.; Xanthopoulos, N.; Renken, A.;
Kiwi-Minsker, L. J. Catal. 2007, 251, 213−222.
5
952
ACS Catal. 2016, 6, 5946−5953