RSC Advances
Communication
6
(a) C. R. Johnson and T. Imamoto, J. Org. Chem., 1987, 52,
170; (b) K. Hara, S.-Y. Park, N. Yamagiwa, S. Matsunaga
and M. Shibasaki, Chem.–Asian J., 2008, 3, 1500.
A. M. Gonzalez-Nogal, P. Cuadrado and M. A. Sarmentero,
Tetrahedron, 2010, 66, 9610.
J., 2013, 8, 713; (g) G. Hu, W. Chen, T. Fu, Z. Peng,
H. Qiao, Y. Gao and Y. Zhao, Org. Lett., 2013, 15, 5362.
13 Details of the nickel(II)-catalyzed reaction in the absence of
2
3
1
7
8
zinc and corresponding P NMR signals were shown in
the ESI†
(a) M. Oliana, F. King, P. N. Horton, M. B. Hursthouse and 14 (a) T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, J. Org.
K. K. Hii, J. Org. Chem., 2006, 71, 2472; (b) M. S. Rahman,
M. Oliana and K. K. Hii, Tetrahedron: Asymmetry, 2004, 15,
Chem., 1981, 46, 3745; (b) T. Hirao, T. Masunaga,
N. Yamada, Y. Ohshiro and T. Agawa, Bull. Chem. Soc. Jpn.,
1982, 55, 909.
1835.
9
(a) R. A. Stockland, R. I. Taylor, L. E. Thompson and 15 (a) D. Samuel and B. L. Silver, J. Org. Chem., 1963, 28, 2089;
P. B. Patel, Org. Lett., 2005, 7, 851; (b) L.-B. Han and
C.-Q. Zhao, J. Org. Chem., 2005, 70, 10121; (c) L. Liu,
Y. Wang, Z. Zeng, P. Xu, Y. Gao, Y. Yin and Y. Zhao, Adv.
Synth. Catal., 2013, 355, 659.
0 (a) H. Fern ´a ndez-P ´e rez, P. Etayo, A. Panossian and A. Vidal-
Ferran, Chem. Rev., 2011, 111, 2119; (b) H. Inoue, Y. Nagaoka
and K. Tomioka, J. Org. Chem., 2002, 67, 5864; (c)
V. V. Grushin, Chem. Rev., 2004, 104, 1629; (d) M. Ruiz,
(b) E. N. Walsh, J. Am. Chem. Soc., 1959, 81, 3023; (c) L. Liu,
S. Zhang, H. Chen, Y. Lv, J. Zhu and Y. Zhao, Chem.–Asian J.,
2013, 8, 2592.
16 (a) H. Chen, X. Xu, L. Liu, G. Tang and Y. Zhao, RSC Adv.,
2013, 3, 16247; (b) H. Fu, Z.-L. Li, Y.-F. Zhao and G.-Z. Tu,
J. Am. Chem. Soc., 1999, 121, 291; (c) X. Gao, H. Deng,
G. Tang, Y. Liu, P. Xu and Y. Zhao, Eur. J. Org. Chem.,
2011, 3220.
1
M. C. Fern ´a ndez, A. D ´ı az, J. M. Quintela and V. Ojea, 17 Y. G. Gololobov, T. V. Kolodka, A. S. Oganesyan,
J. Org. Chem., 2003, 68, 7634; (e) M. C. Fern ´a ndez, A. D ´ı az,
J. J. Guill ´ı n, O. Blanco, M. Ruiz and V. Ojea, J. Org. Chem.,
A. N. Chernega, M. Y. Antipin, Y. T. Struchkov and
P. V. Petrovskii, Russ. J. Gen. Chem., 1986, 56, 1708.
2
006, 71, 6958.
18 When the mixture was added 0.5 mL H
(Et NBr) appeared and we could not detect (EtO)
species.
new signal (ꢁ0.3 ppm) was assigned to
(EtO) P(O)–OH, which was conrmed by MS (ESI).
2
O, the precipitate
1
1 For selected recent publications, see: (a) W. Al-Maksoud,
J. Mesnager, F. Jaber, C. Pinel and L. Djakovitch,
J. Organomet. Chem., 2009, 694, 3222; (b) J. Hu, N. Zhao,
3
2
P(O)–Br
A
2
B. Yang, G. Wang, L.-N. Guo, Y.-M. Liang and S.-D. Yang, 19 (a) C. Kuang, H. Senboku and M. Tokuda, Tetrahedron, 2002,
Chem.–Eur. J., 2011, 17, 5516; (c) O. M. Demchuk,
K. M. Pietrusiewicz, A. Michrowska and K. Grela, Org. Lett.,
58, 1491; (b) S. Abbas, C. J. Hayes and S. Worden, Tetrahedron
Lett., 2000, 41, 3215; (c) A. Kraszewski and J. Stawinski, Pure
Appl. Chem., 2007, 79, 2217; (d) T. M. Shaikh, C.-M. Weng
and F.-E. Hong, Coord. Chem. Rev., 2012, 256, 771.
2003, 5, 3217; (d) X. Mi, M. Huang, H. Guo and Y. Wu,
Tetrahedron, 2013, 69, 5123; (e) A. M. Gonz ´a lez-Nogal,
P. Cuadrado and M. A. Sarmentero, Eur. J. Org. Chem., 20 (a) M. C. Kohler, T. V. Grimes, X. Wang, T. R. Cundari and
2
009, 850; (f) G. Evano, K. Tadiparthi and F. Couty, Chem.
R. A. Stockland, Organometallics, 2009, 28, 1193; (b)
R. A. Dhokale and S. B. Mhaske, Org. Lett., 2013, 15, 2218;
(c) C.-G. Feng, M. Ye, K.-J. Xiao, S. Li and J.-Q. Yu, J. Am.
Chem. Soc., 2013, 135, 9322.
Commun., 2011, 47, 179; (g) M. Niu, H. Fu, Y. Jiang and
Y. Zhao, Chem. Commun., 2007, 3, 272; (h) L.-B. Han,
C. Zhang, H. Yazawa and S. Shimada, J. Am. Chem. Soc.,
2
004, 126, 5080.
21 For computational details see the ESI.†
‡
1
2 For selected recent publications, see: (a) Y. Gao, G. Wang, 22 According to the Eyring equation, i.e., k ¼ (k
B
T/h)exp(ꢁDG /
L. Chen, P. Xu, Y. Zhao, Y. Zhou and L.-B. Han, J. Am.
Chem. Soc., 2009, 131, 7956; (b) W. Miao, Y. Gao, X. Li,
Y. Gao, G. Tang and Y. Zhao, Adv. Synth. Catal., 2012, 354,
B
RT), where k is rate constant, k is Boltzmann's constant, T is
‡
the temperature, DG is the activation free energy, R is the
gas constant and h is Planck's constant, we evaluate the
barrier. Assuming the half life of this reaction is 24 h and
2
659; (c) X. Li, G. Hu, P. Luo, G. Tang, Y. Gao, P. Xu and
ꢁ
1
Y. Zhao, Adv. Synth. Catal., 2012, 354, 2427; (d) X. Zhang,
H. Liu, X. Hu, G. Tang, J. Zhu and Y. Zhao, Org. Lett., 2011,
the concentration of each reactant is 1 mol L , we obtain
ꢁ5
ꢁ1 ꢁ1
the second-order rate constant k is 1.2 ꢂ 10 L mol
s .
‡
ꢁ1
ꢀ
1
3, 3478; (e) H. Chen, Z. Huang, X. Hu, G. Tang, P. Xu,
Y. Zhao and C.-H. Cheng, J. Org. Chem., 2011, 76, 2338; (f) 23 C. Y. Legault, CYLview, 1.0b, Universit ´e de Sherbrooke, 2009,
Z. Zhao, W. Xue, Y. Gao, G. Tang and Y. Zhao, Chem.–Asian http://www.cylview.org.
Therefore, DG is 120.4 kJ mol at 80 C.
2326 | RSC Adv., 2014, 4, 2322–2326
This journal is © The Royal Society of Chemistry 2014