1466
S. Rummel et al. / Journal of Organometallic Chemistry 694 (2009) 1459–1466
([MꢁEt]+, 100%), 128 ([C10H8]+, 92%). Compound 6, m/z: 240 ([M]+,
12%), 142 ([MꢁC7H14]+, 28%), 141 ([MꢁC7H15]+, 100%), 128
([C10H8]+, 14%), 115 ([MꢁC7H15ꢁC2H2]+, 79%). Compound 7, m/z:
214 ([M]+, 12%), 185 ([MꢁEt]+, 30%), 157 ([MꢁBu]+, 22%), 129
([MꢁHex]+, 100%), 128 ([C10H8]+, 80%). Compound 8, m/z: 214
([M]+, 8%), 185 ([MꢁEt]+, 14%), 157 ([MꢁBu]+, 16%), 129 ([MꢁHex]+,
100%), 128 ([C10H8]+, 86%). Compound 9, m/z: 242 ([M]+, 10%), 213
([MꢁEt]+, 35%), 185 ([MꢁBu]+, 11%), 157 ([MꢁHex]+, 31%), 129
([MꢁOct]+, 100%), 128 ([C10H8]+, 93%). Compound 10, m/z: 242
([M]+, 13%), 213 ([MꢁEt]+, 44%), 185 ([MꢁBu]+, 15%), 157
([MꢁHex]+, 42%), 129 ([MꢁOct]+, 84%), 128 ([C10H8]+, 100%). Com-
pound 16, m/z: 204 ([M]+, 8%), 147 ([MꢁBu]+, 9%), 91 ([C7H7]+,
100%). Compound 17, m/z: 246 ([M]+, 15%), 155 ([MꢁPhCH2]+,
10%), 142 ([MꢁPhCHCH2]+, 38%), 141 ([MꢁPh(CH2)2]+, 43%), 128
([C10H8]+, 15%), 115 ([MꢁPh(CH2)2ꢁC2H2]+, 67%), 91 ([C7H7]+,
100%). Compound 18, m/z: 274 ([M]+, 14%), 155 ([MꢁPh(CH2)3]+,
12%), 142 ([MꢁPh(CH2)2CHCH2]+, 37%), 141 ([MꢁPh(CH2)4]+, 64%),
128 ([C10H8]+, 12%), 115 ([MꢁPh(CH2)4ꢁC2H2]+, 70%), 91 ([C7H7]+,
100%).
2% of 2 and 3, 13% of 4, 3% of 5, 3% of 7 and 8); the toluene conver-
sion is 48% (30% of 11, 5% of 12, 8% of 13, 5% of 14).
Other experiments on the toluene and naphthalene alkylation
were carried out by similar procedures. The results are summa-
rized in Tables 1–6.
References
[1] M. Szwarc, M. Van Beylen, Ionic Polymerization and Living Polymers, Chapman
and Hall, New York, London, 1993.
[2] M. Szwarc, Carbanions, Living Polymers and Electron Transfer Processes,
Wiley-Interscience, New York, 1968.
[3] N.L. Holy, Chem. Rev. 74 (1974) 243.
[4] S. Rummel, M.A. Ilatovskaya, E.I. Mysov, V.S. Lenenko, H. Langguth, V.B. Shur,
Angew. Chem., Int. Ed. Engl. 35 (1996) 2489.
[5] S. Watanabe, K. Suga, T. Fujita, Synthesis (1971) 375.
[6] J.C. Carnahan Jr., W.D. Closson, J. Org. Chem. 37 (1972) 4469.
[7] G. Fochi, L. Nucci, J. Organomet. Chem. 407 (1991) 279.
[8] S. Rummel, M.A. Ilatovskaya, H. Langguth, V.B. Shur, Izv. Akad. Nauk, Ser. Khim.
(1999) 1201 (Russ. Chem. Bull. 48 (1999) 1188 (Engl. Transl.)).
[9] H. Roddal, W.E. Foster, J. Org. Chem. 23 (1958) 401.
[10] Y. Saito, S. Tsuchiya, J. Catal. 42 (1976) 288.
[11] R.C. Smith, K.G. Ihrman, M.B. LeBlanc, J. Organomet. Chem. 382 (1990) 333.
[12] C. Melero, A. Guijarro, V. Baumann, A.J. Pérez-Jiménez, M. Yus, Eur. J. Org.
Chem. (2007) 5514.
4.2. Alkylation of naphthalene in the C10H8–Na system
[13] P.D. Bartlett, S.J. Tauber, W.P. Weber, J. Am. Chem. Soc. 91 (1969) 6362.
[14] A. Maercker, R. Stötzel, J. Organomet. Chem. 254 (1983) 1.
[15] C.G. Screttas, B.R. Steele, J. Organomet. Chem. 453 (1993) 163.
[16] B.R. Steele, C.G. Screttas, J. Am. Chem. Soc. 122 (2000) 2391.
[17] V. Rautenstrauch, Angew. Chem., Int. Ed. Engl. 14 (1975) 259.
[18] (a) For the ability of sub-stoichiometric amounts of naphthalene and 4,40-di-
tert-butylbiphenyl to activate metallic lithium in organometallic and organic
syntheses, see also papers given below and references cited therein: C.G.
Screttas, M. Micha-Screttas, J. Org. Chem. 43 (1978) 1064;
(b) D.J. Ramón, M. Yus, Eur. J. Inorg. Chem. (2000) 225;
(c) M. Yus, Synlett (2001) 1197;
Naphthalene (0.384 g, 3 mmol), THF (1.5 ml), metallic sodium
(0.138 g, 6 mmol) and dodecane (0.0533 g) were placed in the
Schlenk tube under Ar. The content of the Schlenk tube was cooled
with liquid dinitrogen and, after removal of the argon by evacua-
tion, the mixture was unfrozen to room temperature. Then ethene
was introduced from an attached mercury burette and the reaction
mixture was stirred at room temperature on a magnetic stirrer. The
course of the reaction was monitored based on ethene absorption.
After 24 h, when the amount of absorbed ethene attained 0.73 mol
per mol of naphthalene (ca. 49 ml, STP), the mixture was diluted
with 1.5 ml of THF and analysed by GLC and GLC/MS. The analyses
showed the presence of 1 (35% based on naphthalene) together
with small amounts (2%) of 2 and 3 in the reaction solution. The
overall conversion of naphthalene is 37%.
(d) M. Yus, R.P. Herrera, A. Guijarro, Chem. Eur. J. 8 (2002) 2574.
[19] J. Smid, J. Am. Chem. Soc. 87 (1965) 655.
[20] R.B. Bates, L.M. Kropovski, D.E. Potter, J. Org. Chem. 37 (1972) 560.
[21] N.M. Atherton, S.I. Weissman, J. Am. Chem. Soc. 83 (1961) 1330.
[22] M. Gomberg, W.E. Bachmann, J. Am. Chem. Soc. 49 (1927) 236.
[23] M.D. Rausch, W.E. McEwen, J. Kleinberg, Chem. Rev. 57 (1957) 417.
[24] A. Maercker, J. Troesch, J. Organomet. Chem. 102 (1975) C1.
[25] A. Streitwieser Jr., W.C. Langworthy, J.I. Brauman, J. Am. Chem. Soc. 85 (1963)
1761.
[26] H. Gilman, B.J. Gaj, J. Org. Chem. 22 (1957) 1165.
[27] M. Moskovitz (Ed.), Metal Clusters, Wiley-Interscience, New York, 1986.
[28] B. Mile, P.D. Sillman, A.R. Yakob, J.A. Howard, J. Chem. Soc., Dalton Trans.
(1996) 653.
4.3. Alkylation of toluene and naphthalene in the C10H8–Li system
[29] A. Kornath, R. Ludwig, A. Zoermer, Angew. Chem., Int. Ed. Engl. 37 (1998) 1575.
[30] A. Kornath, A. Zoermer, R. Ludwig, Inorg. Chem. 41 (2002) 6206.
[31] P. Fantucci, P. Balzarini, J. Mol. Catal. 4 (1978) 337.
[32] J. Flad, H. Stoll, H. Preuss, J. Chem. Phys. 71 (1979) 3042.
[33] R. Rousseau, D. Marx, Chem. Eur. J. 6 (2000) 2982.
[34] L.A. Tjurina, V.V. Smirnov, G.B. Barkovskii, E.N. Nikolaev, S.E. Esipov, I.P.
Beletskaya, Organometallics 20 (2001) 2449.
[35] L.A. Tjurina, V.V. Smirnov, D.A. Potapov, S.A. Nikolaev, S.E. Esipov, I.P.
Beletskaya, Organometallics 23 (2004) 1349.
[36] L.A. Tyurina, V.V. Smirnov, S.E. Esipov, I.P. Beletskaya, Mendeleev Commun.
(2002) 108.
Naphthalene (0.384 g, 3 mmol), THF (1.2 ml), metallic lithium
(0.042 g, 6 mmol), toluene (0.3 ml, 2.84 mmol) and dodecane
(0.0485 g) were charged under Ar in the Shlenk tube and, after
replacement of the argon atmosphere by ethene (from an attached
mercury burette; see above), the mixture was stirred at room tem-
perature on a magnetic stirrer. After 24 h, when the amount of ab-
sorbed ethene reached 2.42 mol per mol of naphthalene (ca.
163 ml, STP), the reaction solution was diluted with 1.5 ml of
THF and analysed by GLC and GLC/MS for the content of products
of the naphthalene and toluene alkylation. The results of the anal-
yses are as follows: the naphthalene conversion is 55% (34% of 1,
[37] K.K. Brandes, R.J. Gerdes, J. Phys. Chem. 71 (1967) 508.
[38] Wiley 138, John Wiley and Sons, Inc., New York, 1990. Wiley Mass Spectral
Database.