C O M M U N I C A T I O N S
Table 2. Kinetic Resolution of tert-Nitroaldols 4a-ga
ments for Young Scientists (B) (for S.M.) from JSPS and MEXT.
H.M. and S.H. thank JSPS predoctoral fellowships.
Supporting Information Available: Experimental procedures,
spectral data of the new compounds, and ESI-MS data. This material
References
(1) For a recent review of the catalytic asymmetric nitroaldol reaction, see:
Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43,
5442.
(2) (a) Christensen, C.; Juhl, K.; Jørgensen, K. A. Chem. Commun. 2001,
2222. (b) Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J.
Org. Chem. 2002, 67, 4875. (c) Lu, S. F.; Du, D. M.; Zhang, S. W.; Xu,
J. Tetrahedron: Asymmetry 2004, 15, 3433. (d) Du, D.-M.; Lu, S.-F.;
Fang, T.; Xu, J. J. Org. Chem. 2005, 70, 3712. (e) Choudary, B. M.;
Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am. Chem.
Soc. 2005, 127, 13167. (f) Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc.
2006, 128, 732.
(3) One example using 2,2,2-trifluoroacetophenone to give the product with
low ee (21% ee) was reported. Misumi, Y.; Bulman, R. A.; Matsumoto,
K. Heterocycles 2002, 56, 599.
(4) (a) Seebach, D.; Lehr, F. Angew. Chem., Int. Ed. Engl. 1976, 15, 505. (b)
Eyer, M.; Seebach, D. J. Am. Chem. Soc. 1985, 107, 3601. (c) Kisanga,
P. B.; Verkade, J. G. J. Org. Chem. 1999, 64, 4298.
(5) For asymmetric nitroaldol reaction of aldehydes using LLB 2a, see
review: Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem., Int. Ed. Engl.
1997, 36, 1236. For other examples of catalytic asymmetric nitroaldol
reactions of aldehydes, see ref 1.
(6) In the nitroaldol reaction in eq 1, excess nitromethane was required to
suppress undesired retro-nitroaldol reaction and to obtain kinetically
controlled product. We speculate that excess nitromethane was also
important due to a low equilibrium constant. Generally, equilibrium
constants for aldol(-type) reactions of ketone electrophiles are much lower
than those of aldehydes. For example, an equilibrium constant for aldol
reaction of benzaldehyde and acetone is 11.7 M-1, while that of
acetophenone and acetone is 1.89 × 10-3 M-1. (a) Guthrie, J. P. J. Am.
Chem. Soc. 1991, 113, 7249. (b) Guthrie, J. P. Wang, X.-P. Can. J. Chem.
1992, 70, 1055 and references therein.
a Reaction was performed in THF (0.4 M) at -20 °C using 3.33 mol %
of (R)-LLB 2a and 1.67 mol % of (R)-LLB* 2b unless otherwise noted.
b Determined by 1H NMR analysis using mesitylene as an internal standard.
c Isolated yields after column chromatography. The theoretical maximum
is (100% - conversion)%. d Determined by chiral HPLC analysis. e (R)-
LLB 2a (1.67 mol %) and (R)-LLB* 2b (0.83 mol %) were used. f (R)-
LLB 2a (6.67 mol %) and (R)-LLB* 2b (3.33 mol %) were used. g Reaction
was run at -40 °C.
(7) (R)-LLB 2a also promoted nitroaldol reactions of other simple ketones in
high enantioselectivity, albeit in poor yields. Ketone 3d (90% ee, 5%
yield); 3e (89% ee, 20% yield).
(8) For an elegant kinetic resolution of tertiary aldols via retro-aldol reaction
with a catalytic antibody, see: (a) List, B.; Shabat, D.; Zhong, G.; Turner,
J. M.; Li, A.; Bui, T.; Anderson, J.; Lerner, R. A.; Barbas, C. F., III. J.
Am. Chem. Soc. 1999, 121, 7283 and references therein. For a retro-
nitroaldol reaction with a catalytic antibody, see: (b) Flanagan, M. E.;
Jacobsen, J. R.; Sweet, E.; Schultz, P. G. J. Am. Chem. Soc. 1996, 118,
6078.
Figure 2. ESI-MS chart of LLB 2a/LLB* 2b ) 2:1 mixture [m/z 840-
1060].15
Scheme 1. Transformations of tert-Nitroaldolsa
(9) Recent general review for nonenzymatic kinetic resolution: (a) Vedejs,
E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974. For examples of
nonenzymatic kinetic resolution of tert-alcohols, see: (b) Angione, M.
C.; Miller, S. J. Tetrahedron 2006, 62, 5254 and references therein.
(10) The absolute configurations of 4a, 4e, and 4f were determined to be R
after conversion into known compounds. See Supporting Information.
(11) The s values in this paper were calculated based on conversion and ee of
recovered 4 assuming first-order kinetic dependence on 4. Kinetic studies
are required to determine accurate s values. For discussion on the validity
of calculated s values, see: Keith, J. M.; Larrow, J. F.; Jacobsen, E. N.
AdV. Synth. Catal. 2001, 343, 5. See also ref 9a.
(12) Reviews: (a) Ding, K.; Du, H.; Yuan, Y.; Long, J. Chem.sEur. J. 2004,
10, 2872. (b) de Vries, J. G.; Lefort, L. Chem.sEur. J. 2006, 12, 4722.
For selected examples, see: (c) Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding,
K. J. Am. Chem. Soc. 2002, 124, 10. (d) Reetz, M. T.; Shell, T.;
Meiswinkel, A.; Mehler, G. Angew. Chem., Int. Ed. 2003, 42, 790. (e)
Pen˜a, D.; Minnaard, A. J.; Boogers, J. A. F.; de Vries, A. H. M.; de Vries,
J. G.; Feringa, B. L. Org. Biomol. Chem. 2003, 1, 1087.
(13) Biphenol 1b-H2: Meyers, A. I.; Nelson, T. D.; Moorlag, H.; Rawson,
D. J.; Meier, A. Tetrahedron 2004, 60, 4459 and references therein.
(14) Because the known synthetic methods of racemic tertiary nitroaldols did
not afford satisfactory yield for 4f, we developed a new synthetic method.
See Supporting Information for details.
(15) Ligand liability of related rare earth-alkali metal heterobimetallic
complexes was reported. (a) Bari, L. D.; Lelli, M.; Salvadori, P. Chem.s
Eur. J. 2004, 10, 4594. See also: (b) Horiuchi, Y.; Gnanadesikan, V.;
Ohshima, T.; Masu, H.; Katagiri, K.; Sei, Y.; Yamaguchi, K.; Shibasaki,
M. Chem.sEur. J. 2005, 11, 5195.
a Reagents and conditions: (a) cat. Pd-C, H2 (1 atm), MeOH, rt; Ac2O,
Et3N, CH2Cl2, 86% (2 steps); (b) cat. B(C6F5)3, Et3SiH, CH2Cl2, rt, 90%;
(c) Ph-acetylene, PhNCO, cat. Et3N, benzene, reflux, 84%; (d) NaNO2,
AcOH, DMSO, rt to 40 °C, 99%.
Scheme 1 illustrates the synthetic utility of tertiary nitroaldols
as chiral building blocks. Hydrogenation of 4a, followed by
acetylation, gave N-Ac amine 5a in 86% yield. Silylated adduct 6e
was successfully converted into isoxazole 7e (84%) and R-hydroxy
carboxylic acid 8e (99%).17
In summary, we achieved a kinetic resolution of tertiary
nitroaldols (()-4 derived from simple ketones. Mixed La-Li
heterobimetallic complexes had the best selectivity (80-97% ee
with 30-47% recovery yield). Further investigation of the structure
of the active species and application of the present mixed hetero-
bimetallic catalyst system to other asymmetric reactions are in
progress.
(16) For full details of ESI-MS data [m/z 200-1300] of LLB 2a, LLB* 2b,
2a/2b ) 2:1, and 2a/2b ) 1:2, see Supporting Information. Although it
is impossible to discuss quantitatively using MS, we believe the ESI-MS
data at least suggested the presence of mixed-ligand La-Li complexes in
the mixture of LLB 2a and LLB* 2b. NMR analysis only resulted in a
complex mixture spectrum.
(17) Matt, C.; Wagner, A.; Mioskowski, C. J. Org. Chem. 1997, 62, 234.
Acknowledgment. This work was supported by Grant-in-Aid
for Specially Promoted Research and Grant-in-Aid for Encourage-
JA064858L
9
J. AM. CHEM. SOC. VOL. 128, NO. 36, 2006 11777