Please do not adjust margins
RSC Advances
Page 4 of 6
DOI: 10.1039/C5RA25296B
COMMUNICATION
Journal Name
the intermediate in the anti-Markovnikov selective oxidation We thank the CSIR Network project CSC-0125 for financial
process.
support. K.S. P.S. and B. R. acknowledge the UGC, India and
M.N. and C.D. acknowledge the CSIR, India for financial
support in the form of fellowships.
Notes and references
1
2
S. Wertz and A. Studer, Green Chem., 2013, 15, 3116.
(a) B. W. Michel and M. S. Sigman, Aldrichimica Acta, 2011,
44, 55; (b) R. Jira, Angew. Chem., 2009, 121, 9196; Angew.
Chem. Int. Ed., 2009, 48, 9034; (c) L. Hintermann, in:
Transition Metals for Organic Synthesis., (Eds.: M. Beller, C.
Bolm), Wiley-VCH, Weinheim, 2004, p 279; (d) J. Tsuji,
Palladium Reagents and Catalysts: New Perspectives for the
21st Century, 2nd edn., Wiley, 2004; (e) J. M. Takacs and X.-
T. Jiang, Curr. Org. Chem., 2003,
Nagashima and H. Nemoto, Org. Synth., 1990,
Tsuji, Synthesis., 1984, 369; (h) J. Smidt, W. Hafner, R. Jira, R.
Sieber, J. Sedlmeier and A. Sabel, Angew. Chem., 1962, 74
93; Angew. Chem. Int. Ed. Engl., 1962, , 80; (i) J. Smidt, W.
7, 369; (f) J. Tsuji, H.
7, 137; (g) J.
,
1
Hafner, R. Jira, J. Sedlmeier, R. Sieber, R. Rüttinger, and H.
Kojer, Angew. Chem., 1959, 71, 176.
3
4
anti-Markovnikov selective functionalization of alkenes was
highlighted as a challenging task in catalysis two decades
ago: J. Haggin, Chem. Eng. News., 1993, 71, 23.
(a) M. Beller, J. Seayad, A. Tillack, and H. Jiao, Angew. Chem.,
2004, 116, 3448; Angew. Chem. Int. Ed., 2004, 43, 3368; (b) J.
Guo and P. Teo, Dalton Trans., 2014, 43, 6952; (c) Y.-D. Du,
C.-W. Tse, Z.-J. Xu, Y. Liu and C.-M. Che, Chem. Commun.,
2014, 50, 12669.
(a) M. A. Kumar, P. Swamy, M. Naresh, M. M. Reddy, C. N.
Rohitha, S. Prabhakar, A. V. S. Sarma, J. R. P. Kumar and N.
Narender, Chem. Commun., 2013, 49, 1711; (b) P. Swamy, M.
M. Reddy, M. Naresh, M. A. Kumar, K. Srujana, C. Durgaiah
and N. Narender, Adv. Synth. Catal., 2015, 357, 1125; (c) P.
Swamy, M. Naresh, M. M. Reddy, K. Srujana, C. Durgaiah, S.
Scheme 4. Plausible mechanism for the I2/oxone mediated catalytic conversion
of vinylarenes to arylacetic acids.
Based on the above investigated results and literature
reports, a plausible mechanism is proposed and is outlined in
Scheme 4. Initially, the I2 reacts directly with an alkene
form a co-iodo intermediate (or reacts with oxone to form
transient HOI species,5c which readily reacts with
to form 3).
The de-iodination of via its oxidation to hypervalent iodine
intermediate followed by reductive elimination led to HOI
and a short lived phenonium ion intermediate C 5c
The
intermediate undergoes aryl group migration to form
corresponding aldehyde , which upon oxidation in presence
of oxone led to the desired arylacetic acid . The HOI
1 to
3
5
6
1
3
4
.
C
Prabhakar and N. Narender, RSC Adv., 2015, 5, 73732.
5
(a) L. Xu, N. Feng, J. Xue, P. Wu and X. Wei, Redai Yaredai
Zhiwu Xuebao., 2008, 16, 140; (b) Y.-J. Zhu, H.-T. Zhou, Y.-H.
Hu, J.-Y. Tang, M.-X. Su, Y.-J. Guo, Q.-X. Chen and B. Liu, Food
Chem., 2011, 124, 298; (c) C. E. Stivala and A. Zakarian, J. Am.
Chem. Soc., 2011, 133, 11936; (d) J. J. Jackson, H. Kobayashi,
S. D. Steffens and A. Zakarian, Angew. Chem. Int. Ed., 2015,
54, 9971; (e) P. Lu, J. J. Jackson, J. A. Eickhoff and A. Zakarian,
J. Am. Chem. Soc., 2015, 137, 656.
2
generated in the first cycle continues the catalytic cycle until
the complete consumption of starting material into the
product.
Conclusions
7
(a) G. Tangw, B. Weinberger and H. des Abbayes,
Tetrahedron Lett., 1983, 24, 4005; (b) C.W. Kohlpaintner, M.
Beller, J. Mol. Catal. A: Chemical, 1997, 116, 259; (c) A.
In conclusion, we have developed the first non-metal
mediated catalytic protocol for the synthesis of phenylacetic
acid derivatives from readily available starting materials using
simple and non-toxic reagents such as molecular iodine and
oxone. This new metal-free catalytic approach offers several
advantages such as mild conditions, simple work up
procedures, use of eco-friendly and readily available reagents
and the exclusion of the need for transition metals. Moreover,
the scope and limitations of this process are demonstrated
with various terminal and internal alkenes. Furthermore, a
plausible mechanism also proposed for the formation of
phenylacetic acid derivatives from vinylarenes under metal-
free catalytic conditions.
Giroux, C. Nadeau and Y. Han, Tetrahedron Lett., 2000, 41
,
7601; (d) Z. Qiu, Y. He, D. Zheng and F. Liu, J. Nat. Gas Chem.,
2005, 14, 40.
Y.-S. Lin and A. Yamamoto, Bull. Chem. Soc. Jpn., 1998, 71,
723.
T. León, A. Correa and R. Martin, J. Am. Chem. Soc., 2013,
135, 1221.
8
9
10 (a) C. M. Williams, J. B. Johnson and T. Rovis, J. Am. Chem.
Soc., 2008, 130, 14936; (b) M. D. Greenhalgh and S. P.
Thomas, J. Am. Chem. Soc., 2012, 134, 11900.
11 J. E. Milne, T. Storz, J. T. Colyer, O. R. Thiel, M. D. Seran, R. D.
Larsen and J. A. Murry, J. Org. Chem., 2011, 76, 9519.
12 For a review, see: (a) P. Finkbeiner and B. J. Nachtsheim,
Synthesis, 2013, 979; For selected examples, see: (b) S. Tang,
Y. Wu, W. Liao, R. Bai, C. Liu and A. Lei, Chem. Commun.,
2014, 50, 4496 and cited references therein; (c) C. Zhu, Y.
Zhang, H. Zhao, S. Huang, M. Zhang and W. Su, Adv. Synth.
Catal., 2015, 357, 331; (d) A. Yoshimura, T. N. Jones, M. S.
Acknowledgements
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins