M. Muranaka et al. / Catalysis Today 164 (2011) 552–555
555
was used as an internal standard (ı 7.26 ppm chloroform for 1H).
[4] For reviews, see:
1
(a) K. Tani, Y. Kataoka, in: A. Togni, H. Grützmacher (Eds.), Catalytic Hetero-
functionalization, Wiley-VCH, New York, 2001, p. 171;
(b) V.Y. Kukushkin, A.J.L. Pombeiro, Inorg. Chim. Acta 358 (2005) 1.
[5] R.A. Holwerda, Inorg. Chim. Acta 288 (1999) 211.
[6] (a) K.L. Breno, M.D. Pluth, D.R. Tyler, Organometallics 22 (2003)
1203;
31P{ H} NMR chemical shifts were relative to 85% H3PO4 at ı 0.00
(external reference). Melting point was measured in a sealed tube
on a Yanaco MP-S3 apparatus and was uncorrected.
4.1. Preparation of 2
(b) K.L. Breno, M.D. Pluth, C.W. Landorf, D.R. Tyler, Organometallics 23 (2004)
1738;
(c) K.L. Breno, T.J. Ahmed, M.D. Pluth, C. Balzarek, D.R. Tyler, Coord. Chem. Rev.
250 (2006) 1141.
[7] (a) S. Murahashi, S. Sasao, E. Saito, T. Naota, J. Org. Chem. 57 (1992)
2521;
Phosphine ligand 2 was prepared according to the previously
described procedure [21] with some modifications as follows. A
solution of 2-(dimethylamino)ethanol (5 mL, 40 mmol) in hexane
(50 mL) was cooled to 0 ◦C, and n-BuLi (2 M hexane solution, 50 mL,
80 mmol) was added as a droplet under argon-atmosphere. After
1.5 h of stirring at 0 ◦C, 4-dimethylaminopyridine (2.4 g, 20 mmol)
was added as a solid. After 1 h of stirring at 0 ◦C, the reaction
mixture was cooled to −78 ◦C, and a hexane (100 mL) solution
of chlorodiphenylphosphine (9.0 mL, 50 mmol) was slowly added
as a droplet. After 1.5 h for stirring at −78 ◦C, the resulting reac-
tion mixture was filtered. Obtained solid was dried in desiccator
overnight. Ethyl acetate and water were added to the dried solid,
and then organic materials were extracted with ethyl acetate. Com-
bined organic solution was dried over anhydrous NaSO4. The crude
solid was recrystallized from ethyl acetate and hexane to give 2 in
53% yield as a pale yellow powder. The product was identified spec-
(b) S. Murahashi, S. Sasao, E. Saito, T. Naota, Tetrahedron 49 (1993)
8805;
(c) W.K. Fung, X. Huang, M.L. Man, S.M. Ng, M.Y. Hung, Z. Lin, C.P. Lau, J. Am.
Chem. Soc. 125 (2003) 11539;
(d) T. Smejkal, B. Breit, Organometallics 26 (2007) 2461;
(e) C.S. Yi, T.N. Zeczycki, S.V. Lindeman, Organometallics 27 (2008)
2030;
(f) C.W. Leung, W. Zheng, Z. Zhou, Z. Lin, C.P. Lau, Organometallics 27 (2008)
4957;
(g) M. Martín, H. Horváth, E. Sola, A. Kathó, F. Joó, Organometallics 28 (2009)
561;
(h) A. Cavarzan, A. Scarso, G. Strukul, Green Chem. 12 (2010) 790;
(i) V. Cadierno, J. Díez, J. Francos, J. Gimeno, Chem. Eur. J. 16 (2010) 9808;
(j) R. García-Álvarez, J. Díez, P. Crochet, V. Cadierno, Organometallics 29 (2010)
3955;
(k) H.B. Ammar, X. Miao, C. Fischmeister, L. Toupet, P.H. Dixneuf,
Organometallics 29 (2010) 4234.
troscopically by comparison to the reported data. Mp 89–91 ◦C. 1
H
[8] (a) J. Chin, J.H. Kim, Angew. Chem. Int. Ed. Engl. 29 (1990) 523;
(b) J.H. Kim, J. Britten, J. Chin, J. Am. Chem. Soc. 115 (1993) 3618.
[9] (a) M.C.K. Djoman, A.N. Ajjou, Tetrahedron Lett. 41 (2000) 4845;
(b) A. Goto, K. Endo, S. Saito, Angew. Chem. Int. Ed. 47 (2008) 3607.
[10] (a) C.S. Chin, S.Y. Kim, K.-S. Joo, G. Won, D. Chong, Bull. Korean Chem. Soc. 20
(1999) 535;
NMR (CDCl3): ı 2.84 (s, 6H), 6.33–6.38 (m, 2H), 7.32–7.42 (m, 10H),
1
8.32 (d, J = 5.8 Hz, 1H); 31P{ H} NMR(CDCl3): ı −2.3 (s).
4.2. A typical procedure is described for the hydration of
benzonitrile catalyzed by the combination of 1 and 2
(b) M.G. Crestani, A. Steffen, A.M. Kenwright, A.S. Batsanov, J.A.K. Howard, T.B.
Marder, Organometallics 28 (2009) 2904.
[11] (a) J.G. Mora, D. Diaz, Transition Met. Chem. 23 (1998) 57;
(b) M.G. Crestani, A. Arevalo, J.J. Garcia, Adv. Synth. Catal. 348 (2006) 732;
(c) M.G. Crestani, J.J. Garcia, J. Mol. Catal. A 299 (2009) 26;
(d) C. Crisostomo, M.G. Crestani, J.J. Garcia, Inorg. Chem. Acta 363 (2010) 1092;
(e) A. Arévalo, J.J. García, Eur. J. Inorg. Chem. (2010) 4063.
[12] N.V. Kaminskaia, I.A. Guzei, N.M. Kostic, J. Chem. Soc., Dalton Trans. (1998)
3879.
[13] (a) T. Ghaffar, A.W. Parkins, Tetrahedron Lett. 36 (1995) 8657;
(b) J. Akisanya, A.W. Parkins, J.W. Steed, Org. Process Res. Dev. 2 (1998) 274;
(c) T. Ghaffar, A.W. Parkins, J. Mol. Catal. A: Chem. 160 (2000) 249;
(d) M. North, A.W. Parkins, A.N. Shariff, Tetrahedron Lett. 45 (2004) 7625;
(e) X. Jiang, A.J. Minnaard, B.L. Feringa, J.G. Vries, J. Org. Chem. 69 (2004) 2327.
[14] R.S. Ramon, N. Marion, S.P. Nolan, Chem. Eur. J. 15 (2009) 8695.
[15] M.N. Kopylovich, V.Y. Kukushkin, M. Haukka, J.J.R.F. Silva, A.J.L. Pombeiro, Inorg.
Chem. 41 (2002) 4798.
Complex 1 and ligand 2 were placed in a 5 mL test tube
added, and then, the tube was sealed by the screw cap. The tube
was heated in an oil bath. After the reaction, the reaction mixture
was subjected to gas chromatography (Shimadzu GC-14A, column:
RESTEK RTX-1 (15 m x 0.32 mm)). In Tables 1 and 2, the yields of
benzamide were calculated from response factors relative to an
internal naphthalene standard. In Table 3, amides were isolated
by a silica-gel short column using ethyl acetate as an eluent. The
amides were identified spectroscopically by comparison to authen-
tic samples.
[16] For reviews, see:
(a) D.B. Grotjahn, Dalton Trans. 46 (2008) 6497;
(b) D.B. Grotjahn, Pure Appl. Chem. 82 (2010) 635;
(c) D.B. Grotjahn, Chem. Lett. 39 (2010) 908;
Acknowledgements
Hydration of alkynes;
(d) D.B. Grotjahn, C.D. Incarvito, A.L. Rheingold, Angew. Chem. Int. Ed. 40 (2001)
3884;
(e) D.B. Grotjahn, D.A. Lev, J. Am. Chem. Soc. 126 (2004) 12232;
(f) D.B. Grotjahn, Chem. Eur. J. 11 (2005) 7146;
(g) L. Hintermann, T.T. Dang, A. Labonne, T. Kribber, L. Xiao, P. Naumov, Chem.
Eur. J. 15 (2009) 7167;
One-pot cyclization and hydration:
We thank ZEON Corporation for a generous gift of commercial
cyclopentyl methyl ether. This work was supported by the JST-
project to develop “innovative seeds” and an Industrial Technology
Research Grant Program in 2006 from NEDO of Japan.
(h) R.N. Nair, P.J. Lee, A.L. Rheingold, D.B. Grotjahn, Chem. Eur. J. 16 (2010) 7992.
[17] (a) T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi, K. Takai,
Organometallics 24 (2005) 6287;
References
(b) T. Oshiki, I. Hyodo, M. Muranaka, J. Biol. Inorg. Chem. 14 (Suppl. 1) (2009)
S230;
[1] K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-VCH,
Weinheim, Germany, 2003, p. 310.
(c) T. Oshiki, I. Hyodo, A. Ishizuka, J. Synth. Org. Chem. Jpn. 68 (2010) 41.
[18] M.O. Albers, E. Singleton, Y.E. Yates, Inorg. Synth. 26 (1989) 253.
[19] (a) S. Komiya, Synthesis of Organometallic Compounds, Wiley-VCH, New York,
1997;
[2] (a) H. Yamada, S. Shimizu, M. Kobayashi, Chem. Rec. 1 (2001) 152;
(b) B. Schultz, in: K. Drauz, H. Waldmann (Eds.), PL Enzyme Catalysis in Organic
Synthesis, Wiley-VCH, Weinheim, 2002, p. 699.
[3] For recent examples, see:
(b) R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, 5th
ed., Wiley-VCH, New York, 2009;
(a) K. Yamaguchi, M. Matsushita, N. Mizuno, Angew. Chem. Int. Ed. 43 (2004)
1576;
(c) J.F. Hartwig, Organotransition Metal Chemistry, University Science Book,
Sausalito, 2010.
[20] (a) M. Utsunomiya, J.F. Hartwig, J. Am. Chem. Soc. 126 (2004) 2702;
(b) J. Takaya, J.F. Hartwig, J. Am. Chem. Soc. 127 (2005) 5756.
[21] D. Cuperly, P. Gros, Y. Fort, J. Org. Chem. 67 (2002) 238.
(b) A. Ishizuka, Y. Nakazaki, T. Oshiki, Chem. Lett. 38 (2009) 360;
(c) T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Chem. Commun. 36 (2009) 3258;
(d) V. Polshettiwar, R.S. Varma, Chem. Eur. J. 15 (2009) 1582;
(e) K. Yamaguchi, N. Mizuno, Synlett 16 (2010) 2365.