944
S. U. F. Rizvi et al. / Bioorg. Med. Chem. Lett. 22 (2012) 942–944
Laudeman, C. P.; Luttrell, D. K.; Mook, R. A.; Nolte, R. T.; Rudolph, S. K.;
Szewczyk, J. R.; Truesdale, A. T.; Veal, J. M.; Wang, L. P.; Stafford, J. A. J. Med.
Chem. 2008, 51, 4632.
structure (PDB: 2XIR) at a resolution of 1.5 Å. ATP-binding pocket of
VEGFR-2 kinase posses the conserved Asp-Phe-Gly (DFG) loop
which plays a crucial role in designing and/or virtual screening of
new compounds targeting VEGFR-2 tyrosine kinase domain.Figures
2 and 3 shows binding mode of the most potent compound (19).
Molecular insights based on molecular docking16 indicated
favorable binding interactions of quinolyl-thienyl chalcones with
ATP-binding pocket of VEGFR-2 kinase including Asp-Phe-Gly
(DFG). Structural analysis revealed the fact that quinolyl moiety
was favorably penetrated into flat but slightly polar pocket sur-
rounded by Cys 919, Phe 918, Leu 840, and Lys 920 (Fig. 1). Com-
pound 19 showed significant binding interaction with amino
group of Cys 919 via hydrogen bonding, which was further rein-
forced by favorable electrostatic interaction of Chlorine atom at po-
sition 2 of quinoline moiety with aggregated positively charged
pocket (light blue color in Fig. 3). On the other hand, 5-chloro moi-
ety of thienyl ring was identified to be involved in hydrogen bond-
ing with amino group of Asp 1046. Furthermore, 2-chloro group of
the same ring was found to be interacting with Lys 868 thus fur-
ther supporting the favorable binding interactions of compound
19 with ATP-binding pocket of tyrosine kinase domain of VEGFR-
2 kinase. Thienyl moiety along 2,5-dichloro moiety penetrated dee-
ply with sling turning owing to its better potency. Deeper pocket
favorably matched thienyl ring based on its shape, electrostatic
environment (Fig. 2) and hydrogen bonding. However, all com-
pounds with methyl group at position 8 of quinoline ring showed
very low activity which could be attributed to its minor steric clash
with outer pocket of the ATP-binding pocket of VEGFR-2 kinase.
In conclusion, a series of quinolyl-thienyl chalcones showed sig-
nificant anti-angiogenic potential. These compounds have strong
potential to be further developed as a new class of VEGFR-2 kinase
inhibitory with promising anti-angiogenic potential. Further chem-
ical modification via fragment modifications guided by structure
and ligand-based computational methodologies can lead to dis-
cover better agents as potential clinical candidates.
3. Kim, K. J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips, H. S.; Ferrara, N.
Nature 1993, 362, 841.
4. Cross, M. J.; Claesson-Welsh, L. Trends Pharmacol. Sci. 2001, 22, 201.
5. Prewett, M.; Huber, J.; Li, Y.; Santiago, A.; O’Connor, W.; King, K.; Overholser, J.;
Hooper, A.; Pytowski, B.; Witte, L.; Bohlen, P.; Hicklin, D. J. Cancer Res. 1999, 59,
5209.
6. Sun, L.; Tran, N.; Liang, C.; Hubbard, S.; Tang, F.; Lipson, K.; Schreck, R.; Zhou, Y.;
McMahon, G.; Tang, C. J. Med. Chem. 2000, 43, 2655.
7. Bold, G.; Altmann, K. H.; Frei, J.; Lang, M.; Manley, P. W.; Traxler, P.; Wietfeld,
B.; Bruggen, J.; Buchdunger, E.; Cozens, R.; Ferrari, S.; Furet, P.; Hofmann, F.;
Artinybaron, G.; Mestan, J.; Rosel, J.; Sills, M.; Stover, D.; Acemoglu, F.; Boss, E.;
Emmenegger, R.; Lasser, L.; Masso, E.; Roth, R.; Schlachter, C.; Vetterli, W. J.
Med. Chem. 2000, 43, 2310.
8. Fraley, M. E.; Arrington, K. L.; Buser, C. A.; Ciecko, P. A.; Coll, K. E.; Fernandes, C.;
Hartman, G. D.; Hoffman, W. F.; Lynch, J. J.; McFall, R. C.; Rickert, K.; Singh, R.;
Smith, S.; Thomas, K. A.; Wong, B. K. Bioorg. Med. Chem. Lett. 2004, 14, 351.
9. Wu, Z.; Fraley, M. E.; Bilodeau, M. T.; Kaufman, M. L.; Tasber, E. S.; Balitza, A. E.;
Hartman, G. D.; Coll, K. E.; Rickert, K.; Shipman, J.; Shi, B.; Sepp-Lorenzino, L.;
Thomas, K. A. Bioorg. Med. Chem. Lett. 2004, 14, 909.
10. Bilodeau, M. T.; Cunningham, A. M.; Koester, T. J.; Ciecko, P. A.; Coll, K. E.;
Huckle, W. R.; Hungate, R. W.; Kendall, R. L.; McFall, R. C.; Mao, X.; Rutledge, R.
Z.; Thomas, K. A. Bioorg. Med. Chem. Lett. 2003, 13, 2485.
11. Bilodeau, M. T.; Rodman, L. D.; McGaughey, G. B.; Coll, K. E.; Koester, T. J.;
Hoffman, W. F.; Hungate, R. W.; Kendall, R. L.; McFall, R. C.; Rickert, K. W.;
Rutledge, R. Z.; Thomas, K. A. Bioorg. Med. Chem. Lett. 2004, 14, 2941.
12. Hennequin, L. F.; Stokes, E. S.; Thomas, A. P.; Johnstone, C.; Plé, P. A.; Ogilvie, D.
J.; Dukes, M.; Wedge, S. R.; Kendrew, J.; Curwen, J. O. J. Med. Chem. 2002, 45,
1300.
13. Rizvi, S. U. F.; Siddiqui, H. L.; Parvez, M.; Ahmad, M.; Siddiqui, W. A. Chem.
Pharm. Bull. 2010, 58, 301.
14. Rizvi, S. U. F.; Siddiqui, H. L.; Ahmad, M. N.; Ahmad, M.; Bukhari, M. H. Med.
15. Briefly, VEGFR kinase protein (Upstate Biotechnology, Lake Placid, USA). The
enzyme selectivity screen was performed with a tyrosine kinase assay kit
(Invitrogen, PanVera Co., USA) based on fluorescence polarization detection.
Reactions were performed in 96-well polystyrene round-bottomed plates in a
final volume of 100 mL. Reaction mixtures contained 20 mM HEPES (pH 7.4),
5 mMMgCl2, 2 mM MnCl2, 50 mM Na3VO4, 200 ng/mL enzyme, 20 mM ATP,
and 1 ng/mL poly(Glu,Tyr) 4:1. One hundred compounds at concentrations of
10 and 1 mM were tested. After 1 h of incubation, the reactions were
terminated by adding a 6 mM EDTA solution; anti-phosphotyrosine antibody,
PTK green tracer, and FP dilution buffer mixtures were then added. The
fluorescence polarization values were measured after 30 min at room
temperature, using
a fluorescence reader (BioTek, USA). Kinase inhibition
analysis was performed by using Prism 5.0 (GraphPad Software Inc., USA).
16. (a) Khan, I.; Nisar, M.; Shah, M. R.; Shah, H.; Khan, A. Z.; Khan, H.; Samiullah;
Gilani, S. N.; Gul, F.; Khann.; Ullah, M. Fitoter. 2011, 82, 1003; (b) Khan, I.; Nisar,
M.; Ahmad, M.; Shah, H.; Saeed, M.; Halimi, S. M. A.; Kaleem, W. A.; Qayum, M.;
Aman, A.; Abdullah, S. M. Fitoter. 2010, 82, 276.
References and notes
1. (a) Yang, Y.; Shi, L.; Zhou, Y.; Li, H.-Q.; Zhu, Z.-W.; Zhu, H.-L. Bioorg. Med. Chem.
Lett. 2010, 20, 6653; (b) Brown, J. M.; Giaccia, A. J. Cancer Res. 1998, 58, 1408.
2. Harris, P. A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R. M.; Davis-Ward, R. G.;
Epperly, A. H.; Hinkle, K. W.; Hunter, R. N.; Johnson, J. H.; Knick, V. B.;