I
J. C. Sarie et al.
Special Topic
Synthesis
Dichloro[4-(trifluoromethyl)phenyl]-3-iodane (2h)
(5) Cotter, J. L.; Andrew, L. J.; Keefer, R. M. J. Am. Chem. Soc. 1962,
84, 793.
According to the general procedure using 1-iodo-4-(trifluorometh-
yl)benzene (1.09 g, 4.0 mmol, 1.0 equiv), acetonitrile (16 mL), water
(16 mL), NaOCl (8 mL) and conc. HCl (8 mL). The reaction mixture was
stirred at ambient temperature for 2 h to afford, after work-up, di-
chloro[4-(trifluoromethyl)phenyl]-3-iodane (2h) as a yellow solid
(1.27 g, 3.7 mmol, 93%).
(6) (a) Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
(b) Molnár, I. G.; Thiehoff, C.; Holland, M. C.; Gilmour, R. ACS
Catal. 2016, 6, 7167. (c) Scheidt, F.; Thiehoff, C.; Yilmaz, G.;
Meyer, S.; Daniliuc, C. G.; Kehr, G.; Gilmour, R. Beilstein J. Org.
Chem. 2018, 14, 1021. (d) Scheidt, F.; Schäfer, M.; Sarie, J. C.;
Daniliuc, C. G.; Molloy, J. J.; Gilmour, R. Angew. Chem. Int. Ed.
2018, 57, 16431. (e) Scheidt, F.; Neufeld, J.; Schäfer, M.;
Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 94, 8073.
Mp 125–127 °C.
1H NMR (400 MHz, CDCl3): = 8.35 (m, 2 H, H2), 7.74 (m, 2 H, H3).
13C{1H} NMR (151 MHz, CDCl3): = 134.4 (2 C, C2), 134.3 (q, 2JFC = 33.6
Hz, 1 C, C4), 128.5 (q, 3JFC = 3.7 Hz, 2 C, C3), 127.5 (5JFC = 1.3 Hz, 1 C, C1),
123.0 (1JFC = 273.1 Hz, 1 C, C5).
(7) Bloomfield, G. F. J. Chem. Soc. 1944, 114.
(8) (a) Breslow, R.; Dale, J. A.; Kalicky, P.; Liu, S. Y.; Washburn, W. N.
J. Am. Chem. Soc. 1972, 94, 3276. (b) Snider, B. B.; Corcoran, R. J.;
Breslow, R. J. Am. Chem. Soc. 1975, 97, 6791.
19F NMR (564 MHz, CDCl3): = –63.2 (s, 3 F, F5).
(9) For selected examples, see: (a) Shellhamer, D. F.; Ragains, M. L.;
Gipe, B. T.; Heasley, V. L.; Heasley, G. E. J. Fluorine Chem. 1982,
20, 13. (b) Michinori, O.; Jiro, T.; Yoriko, S.; Kazuhiro, M.; Nobuo,
N. Bull. Chem. Soc. Jpn. 1988, 61, 4303. (c) Garve, L. K. B.;
Barkawitz, P.; Jones, P. G.; Werz, D. B. Org. Lett. 2014, 16, 5804.
(d) Kaiho, T.; Zhdankin, V. V. Industrial Applications, In Patai’s
Chemistry of Functional Groups; Rappoport, Z., Ed.; John Wiley &
Sons: New York, 2018, 1–13.
MS (EI): m/z (%) = 307 (1) [M – Cl]•+, 272.1 (100) [M – Cl2]•+, 145.0 (92)
[M – ICl2]•+.
Dichloro(4-nitrophenyl)-3-iodane (2i)
Acording to the general procedure using 1-iodo-4-nitrobenzene (996
mg, 4.0 mmol, 1.0 equiv), acetonitrile (16 mL), water (16 mL), NaOCl
(8 ml) and conc. HCl (8 mL). The reaction mixture was stirred at ambi-
ent temperature for 2 h to afford, after work-up, dichloro(4-nitrophe-
nyl)-3-iodane (2i) as a yellow solid (1.18 g, 3.7 mmol, 92%).
(10) Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch, P. M.; Chen, J.
S. J. Am. Chem. Soc. 2011, 133, 8134.
(11) (a) Podgorsek, A.; Jurisch, M.; Stavber, S.; Zupan, M.; Iskra, J.;
Gladysz, J. A. J. Org. Chem. 2009, 74, 3133. (b) Thorat, P. B.;
Bhong, B. Y.; Karade, N. N. Synlett 2013, 24, 2061.
(12) (a) Kitamura, T.; Tazawa, Y.; Morshed, M. H.; Kobayashi, S.
Synthesis 2012, 44, 1159. (b) Granados, A.; Jia, Z.; del Olmo, M.;
Vallribera, A. Eur. J. Org. Chem. 2019, 2812.
Mp 174–175 °C.*
1H NMR (400 MHz, CDCl3): = 8.43 (m, 2 H, H2), 8.31 (m, 2 H, H3).
13C{1H} NMR (151 MHz, CDCl3): = 149.8 (1 C, C4), 135.0 (2 C, C2),
129.1 (1 C, C1), 126.3 (2 C, C3).
MS (EI): m/z (%) = 284 (1) [M – Cl]•+, 249.1 (100) [M – Cl2]•+.
(13) For examples, see: (a) Archer, E. M.; van Schalkwyk, T. G. D. Acta
Crystallogr. 1953, 6, 88. (b) Carey, J. V.; Chaloner, P. A.;
Hitchcock, P. B.; Neugebauer, T.; Seddon, K. R. J. Chem. Res. 1996,
2031. (c) Montanari, V.; DesMarteau, D. D.; Pennington, W. T.
J. Mol. Struct. 2000, 550-551, 337.
* In agreement with the literature.15
Funding Information
(14) (a) Mishra, A. K.; Olmstead, M. M.; Ellison, J. J.; Power, P. P. Inorg.
Chem. 1995, 34, 3210. (b) Protasiewicz, J. D. J. Chem. Soc., Chem.
Commun. 1995, 1115. (c) Minkwitz, R.; Berkei, M. Inorg. Chem.
1999, 38, 5041. (d) Nikiforov, V. A.; Karavan, V. S.; Miltsov, S. A.;
Selivanov, S. I.; Kolehmainen, E.; Wegelius, E.; Nissinen, M.
ARKIVOC 2003, (vi), 191. (e) Bekoe, D. A.; Hulme, R. Nature
1956, ; this article reports the structure of p-ClC6H4ICl2 but
without including bond distances or angles 177, 1230.
(15) Zhao, X.-F.; Zhang, C. Synthesis 2007, 551.
We acknowledge generous financial support from Westfälische
Wilhelms-Universität Münster.()
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(16) Wu, Y.; Shafir, A. NMR of Hypervalent Iodine Compounds, In
Patai’s Chemistry of Functional Groups; Rappoport, Z., Ed.; John
Wiley & Sons: New York, 2018.
References
(17) Viesser, R. V.; Ducati, L. C.; Tormena, C. F.; Autschbach, J. Phys.
Chem. Chem. Phys. 2018, 20, 11247.
(18) Katritzky, A. R.; Gallos, J. K.; Dupont Durst, H. Magn. Reson.
Chem. 1989, 27, 815.
(19) Bondi, A. J. Phys. Chem. 1964, 68, 441.
(20) Tyson, E. L.; Ament, M. S.; Yoon, T. P. J. Org. Chem. 2013, 78,
2046.
(21) (a) Singh, A. K.; Kim, M.-G.; Lee, H.-J.; Singh, R.; Cho, S. H.; Kim,
D.-P. Adv. Synth. Catal. 2018, 360, 2032. (b) Qin, Y.; Wei, W.; Luo,
M. Synlett 2007, 2410.
(22) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.
(23) Motherwell, W. B.; Greaney, M. F.; Tocher, D. A. J. Chem. Soc.,
Perkin Trans. 1 2002, 2809.
(1) Willgerodt, C. J. Prakt. Chem. 1886, 33, 154.
(2) (a) Kekulé, A. Bull. Soc. Chim. Paris 1865, 3, 98. (b) Kekulé, A.
Ann. Chem. Pharm. 1866, 137, 129.
(3) For excellent reviews on hypervalent iodine difunctionalisation,
see: (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
(b) Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073. (c) Arnold, A.
M.; Ulmer, A.; Gulder, T. Chem. Eur. J. 2016, 22, 8728.
(d) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(e) Li, X.; Chen, P.; Liu, G. Beilstein J. Org. Chem. 2018, 14, 1813.
(f) Flores, A.; Cots, E.; Bergès, J.; Muñiz, K. Adv. Synth. Catal.
2019, 361, 2.
(4) Garvey, B. S. Jr.; Halley, L. F.; Allen, C. F. H. J. Am. Chem. Soc. 1937,
59, 1827.
(24) Ranganathan, S.; Ranganathan, D.; Ramachandran, P. V. Tetrahe-
dron 1984, 40, 3145.
© 2019. Thieme. All rights reserved. — Synthesis 2019, 51, A–I