Page 3 of 4
ChemComm
DOI: 10.1039/C4CC08644A
not detected) plays no role in the process of interconversion
Notes and references
between ylide and Pꢀhydroxytetraorganophosphorane. We
propose instead that the phosphorane is formed directly from
ylide + H2O by (reversible) concerted addition of an OꢀH bond
cross the P=C bond. Indeed, it is even possible that the
hydrolysis of pꢀnitrobenzyl phosphonium salt 1 (Chart 1),
which is 1st order in each of phosphonium salt & hydroxide,
may proceed by initial formation of ylide, and hence occurs by
a different mechanism to that shown in Scheme 1. The sample
a
55 Centre for Synthesis & Chemical Biology, University College Dublin,
Belfield, Dublin 4, Ireland. Tel: +353-1-7162308.
b
Current address: Department Chemie, Ludwig–Maximilians–Universität
5
München, Butenandtstr. 5–13 (Haus F), 81377 München, Germany. E-
mail: peter. byrne@cup.lmu.de.
60 † Electronic Supplementary Information (ESI) available: Additional
discussion of the mechanism of phosphonium salt hydrolysis, experimental
procedures & characterisation details for new compounds are available.
See DOI: 10.1039/b000000x/
10 of Pꢀhydroxyphosphorane 8 was stored at ꢀ19 °C, and was
1
observed by H & 31P NMR (run at 25 °C) to have survived for
1
P. Wyatt, S. Warren, M. McPartlin, T. Woodroffe, J. Chem. Soc.,
Perkin Trans. I 2001, 279; P. Calcagno, B. M. Kariuki, S. J. Kitchin,
J. M. A. Robinson, D. Philp, K. D. M. Harris, Chem. Eur. J. 2000, 6,
2338; D. W. Allen, J. P. Mifflin, P. J. Skabara, J. Organomet. Chem.,
2000, 601, 293; F. Zaragoza, J. Org. Chem. 2002, 67, 4963.
D. Valentine Jr., J. F. Blount, K. Toth, J. Org. Chem. 1980, 45, 3691.
E. C. Taylor, S. F. Martin J. Am. Chem. Soc. 1974, 96, 8095; M.
Schwarz, J. E. Oliver, P. E.; Sonnet, J. Org. Chem. 1975, 40, 2410; K.
Y. Lee, J. E. Na, M. J. Lee, J. N. Kim Tetrahedron Lett. 2004, 45,
5977.
J.ꢀB. Zhu, P. Wang, P.; S. Liao, Y. Tang Org. Lett. 2013, 15, 3054.
A. ElꢀDahshan, Ahsanullah, J. Rademann Biopolymers 2010, 94, 220.
J.ꢀB. Zhu, P. Wang, P.; S. Liao, Y. Tang Chem. Commun. 2013, 49,
4570; D. Duvvuru, P. Retailleau, J.ꢀF. Betzer, A. Marinetti Eur. J.
Org. Chem. 2012, 897–900.
Y. Li, S. Das, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2012,
134, 9727; Y. Li, L.ꢀQ. Lu, S. Das, S. Pisiewicz, K. Junge, M. Beller,
J. Am. Chem. Soc. 2012, 134, 18325; T. Yano, M. Hoshino, M.
Kuroboshi, H. Tanaka, Synlett 2010, 5, 801; K. V. Rajendran, D. G.
Gilheany Chem. Commun. 2012, 48, 817; P. A. Byrne, K. V.
Rajendran, J. Muldoon, D. G. Gilheany, Org. & Biomol. Chem. 2012,
10, 3531; N. P. Kenny, K. V. Rajendran, E. V. Jennings, D. G.
Gilheany Chem. Eur. J. 2013, 19, 14210.
5 days at ꢀ19 °C. Warming of the sample to 25 °C resulted in
the formation of ringꢀopened phosphine oxide 10 (Scheme 2)
almost to the exclusion of the other two possible phosphine
15 oxide products (cf. other cyclic phosphonium salts, especially
4, vide supra). The identity of 10 was confirmed
unambiguously by comparison with the NMR data of an
2
3
authentic sample prepared by independent means
– αꢀ
methylation of phosphine oxide 9 via a phosphinoxy carbanion
20 (see Scheme 2).
4
5
6
O
P
O
P
Ph
Ph
(i) n-BuLi
THF, -78 °C
Ph
Ph
Et
(ii) MeI
7
9
10
Scheme 2. Synthesis of phosphine oxide 10.
In conclusion, we have succeeded in carrying out the first
ever
25 hydroxytetraorganophosphorane,
phosphonium salt and ylide hydrolysis.
spectroscopic
observation
of
a
P-
of
the
intermediate
The 31P NMR
8
9
W. E. McEwen, K. F. Kumli, A. BladeꢀFont, M. Zanger, C. A.
VanderWerf, J. Am. Chem. Soc. 1964, 86, 2378.
chemical shift and associated spectral data reported above
establish that the intermediate is a TBP phosphorane, and
validates the operation of the proposed mechanism shown in
30 Scheme 1 for phosphonium salt hydrolysis. The establishment
of the structure of this intermediate provides a basis for a
unifying explanation of the outcomes (ring opening, ring
expansion, retention of stereochemistry at phosphorus) of the
hydrolysis reactions of the various cyclic phosphonium salts.28
35 It seems likely that spectroscopic observation of the Pꢀ
hydroxyphosphoranes arising from hydrolysis of other cyclic
phosphonium salts (e.g. 4) should be possible, at least in some
cases. Given the relative stability of 8 (it survived under inert
atmosphere for several days at ꢀ19 °C), it may be possible to
40 pursue novel synthetic avenues by testing the reactivity of 8
and analogues. Finally, we have provided evidence that the
first step of ylide hydrolysis is not protonation of the ylide, but
rather is concerted addition of an OꢀH bond across the P=C
bond.
F. Ramirez, S. Dershowitz, J. Org. Chem. 1957, 22, 41; A. W.
Johnson, J. Org. Chem. 1959, 24, 282; F. Ramirez, O. P. Madan, C. P.
Smith, Tetrahedron Lett., 1965, 201; G. Wittig, G. Laib, Liebigs Ann.
Chem. 1953, 580, 57; A. W. Johnson, R. B. Lacount, Tetrahedron,
1960, 9, 130; M. P. Cooke, J. Org. Chem. 1973, 38, 4082.
10 A. Schnell, J. G. Dawber, J. C. Tebby, J. Chem. Soc., Perkin Trans. II,
1976, 633; A. Schnell, J. C. Tebby, J. Chem. Soc., Chem. Commun.,
1975, 134; A. Schnell, J. C. Tebby, J. Chem. Soc., Perkin Trans. I,
1977, 1883.
11 C. A. VanderWerf, W. E. McEwen, M. Zanger, J. Am. Chem. Soc.
1959, 81, 3806.
12 G. Asknes, J. Songstad, Acta. Chem. Scand. 1962, 16, 1426.
13 W. E. McEwen, G. Axelrad, M. Zanger, C. A. VanderWerf, J. Am.
Chem. Soc. 1965, 87, 3948; W. E. McEwen in Topics in Phosphorus
Chemistry; M. Grayson & E. J. Griffith , Eds.; Interscience: New
York, 1965, Vol. 2, pp. 5ꢀ9.
14 J. G. Dawber, R. G. Skerratt, J. C. Tebby, A. A. C. Waite,
Phosphorus, Sulfur, Silicon Relat. Elem. 2012, 187, 1261.
15 A. W. Johnson, Ylides and Imines of Phosphorus, 1993, Wiley; New
York.
16 R. R. Holmes, Pentacoordinated Phosphorus, Voulme II, 1980,
American Chemical Society; Washington D. C.; pp. 115ꢀ129.
17 H. J. Cristau, F. Plénat in The Chemistry of Organophosphorus
Compounds Volume 3; F. R. Hartley, Ed.; Wiley: Chichester, 1994,
Chapter 2; pp. 111ꢀ138.
45 Acknowledgements
This work was supported by the Synthesis and Solid State
Pharmaceutical Centre (SSPC) and Science Foundation Ireland
(SFI) under grant number 12/RC/2275. We also thank SFI for
the acquisition at UCD of an NMR spectrometer equipped for
50 low temperature experiments (SFI Infrastructural Award
[12/RI/2341(2)]).
18 D. W. Allen, I. T. Miller J. Chem. Soc. (C) 1967, 1869; D. W.
Allen, I. T. Miller J. Chem. Soc. (C) 1969, 252.
19 G. W. Fenton, C. K. Ingold, J. Chem. Soc. 1929, 2342; M. Schlosser,
Angew. Chem. 1962, 74, 291; D. W. Allen, B. G. Hutley, M. T. J.
Mellor, J. Chem. Soc., Perkin Trans. II, 1974, 1690; L. Hey, C. K.
Ingold J. Chem.Soc. 1933, 531; D. Q. Allen, B. G. Huntley, M. T. J.
Mellor J. Chem. Soc., Perkin Trans. II 1972, 63.
20 K. Bergeson Acta Chem. Scand. 1966, 20, 899.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3