THE DIANIONS OF NAPHTHALENE AND BIPHENYL ARE AMONG THE STRONGEST ET REAGENTS AVAILABLE
3
J(H,H) = 6.5 Hz, 2H,CCH
2
CH), 2.67–2.72 (m, 2H, (CH = CH)
C(Ph)), 5.84 (app dm,
C(Ph)), 7.12–7.21 (m, 1H, Ph), 7.26–7.40
m, 4H, Ph); C NMR (75 MHz, CDCl , 25 °C, TMS): δ = 5.22 (2C, 2 × CH
of cyclopropane), 7.26 (CH of cyclopropane), 26.25 (CCH CH), 44.94
), 123.09 (2C, (CH = CH) CH ),
25.91 (CHar), 126.79 (2C, CHar), 128.37 (2C, CHar), 133.35 (2C, CH = CH)
2
CH
2
), 5.75 (app
CRC Press: Boca Raton, FL., 2004, 8–33; b) In THF, a reported half-peak
+ +
3
3
dt, J(H,H) = 10.4 Hz, J(H,H) = 1.8 Hz, 2H, (CH = CH)
2
½
potential for the pair Li(s)/Li(THF) is E (Li/Li ) = –3.07 V vs. Ag/AgCl: J.
3
Mortensen, J. Heinze, Tetrahedron Lett. 1985, 26, 415–418; c) The
J(H,H) = 10.4 Hz, 2H, (CH = CH)
2
+
f
1
3
formal Li /Li
potencial was measured recently, E = ꢀ3.48 V
(
s) (THF)
0
(
3
C
2
+
6–
vs. Fc/Fc PF : C. A. Paddon, S. E. Ward Jones, F. L. Bhatti, T. J.
Donohoe, R. G. Compton, J. Phys. Org. Chem. 2007, 20, 677–684.
6] Among polycyclic aromatic hydrocarbons, naphthalene, holds the
2
((CH = CH)
2
C(Ph)), 45.90 ((CH = CH)
2
CH
2
2
2
[
1
highest—yet to be measured—second reduction potential E°
2 8
(C10H ,
+
2
C(Ph)), 148.34 (CPh); MS (70 eV): m/z (%): 212 (0.03) [M + 2], 211 (0.33)
E° = ꢀ2.53 V; E° = beyond the experimental limit). Biphenyl on the
1
2
+ +
[
(
M + 1], 210 (1.93) [M ], 156 (13), 155 (100), 154 (31), 153 (12); HRMS:
EI) m/z calcd for C16 18 210.1408, found 210.1395.
1
other hand, has the highest first reduction potential E° , giving rise to
H
the radical anion, and the second higher E°
2
, affording the dianion
NH vs.
(
C
12
H
10, E° = –3.18 V). All measured in Me
1
= ꢀ2.68 V, E°
2
2
Ag/AgCl: K. Meerholz, J. Heinze, J. Am. Chem. Soc. 1989, 111, 2325–2326.
7] Taking E°(Li/Li+) ≈ ꢀ3.08 V vs. Ag/AgCl as a reasonable value in THF
and comparing it to the second reduction wave of biphenyl, E°2
= ꢀ3.18 V vs. Ag/AgCl, it turns out that the lithium double
(1-(3-Butenyl)cyclohexa-2,5-dienyl)benzene (4a′).
R
f
= 0.61 (hexane);
[
ꢀ
1
IR (film): ν (cm ) = 3028, 2924, 2847, 2809, 1634, 1602,
1
1
487, 1441, 908, 744, 700; H NMR (300 MHz, CDCl
TMS): δ 1.82–1.94 (m, 2H, (Ph)CCH CH ), 1.99–2.11 (m,
CH CH = CH ), 2.63–2.73 (m, 2H, (CH = CH) CH ),
.94 (app dm, J(H,H) = 10.2 Hz, 1H, CH = CHH), 5.02 (app
3
, 25 °C,
(Bp–2/Bp–1)
reduction of biphenyl is slightly endergonic under standard condi-
tions (ΔG° = ꢀnFE°). The situation is even more unfavorable for
naphthalene. Although this is only approximate since electrochem-
ical data comes from different sources under different conditions (e.
g. solvent), it is still indicative of the reducing strength of the
dianions considered in this work.
H
2
2
2
4
H, CH
2
2
2
2
2
3
3
3
dm, J(H,H) = 17.1 Hz, 1H, CH = CHH), 5.61 (app dt, J(H,H)
4
=
10.5 Hz, J(H,H) = 2.0 Hz, 2H, (CH = CH)
CH , CH = CH ), 7.14–7.21 (m, 1H, Ph), 7.27–7.40 (m, 4H, Ph);
C NMR (75 MHz, CDCl , 25 °C, TMS): δ = 26.26 ((CH = CH) CH ), 29.78
CH CH CH = CH ), 39.29 ((Ph)CCH CH ), 44.04 ((CH = CH) C(Ph)), 114.18
CH = CH), 123.87 (2C, (CH = CH) CH ), 126.05 (CHPh), 126.77 (2C,
× CHPh), 128.42 (2C, 2 × CHPh), 132.55 (2C, (CH = CH) C(Ph)), 139.44
CH = CH ), 148.26 (CPh); MS (70 eV): m/z (%): 211 (0.08) [M + 1], 210
2
C(Ph)), 5.80–5.96 (m, 3H,
(
CH = CH)
2
2
2
[
8] a) C. Melero , A. Guijarro , M. Yus , Tetrahedron Lett. 2006, 47, 6267–6271;
b) C. Melero , A. Guijarro , V. Baumann , A. J. Perez-Jimenez , M.
Yus , Eur. J. Org. Chem. 2007, 5514–5526.
1
3
3
C
2
2
(
(
2
2
2
2
2
2
2
2
2
2
[9] R. P. Herrera , A. Guijarro , M. Yus , Tetrahedron Lett. 2003, 44,
1309–1312.
2
+
[
[
[
[
10] a) J. F. Garst , F. E. Barton II , Tetrahedron Lett. 1969, 7, 587–590; b) J. F.
Garst , F. E. Barton II , J. Am. Chem. Soc. 1974, 96, 523–529.
11] J. M. Percy, in: Science of Synthesis (Ed: J. M. Percy), Thieme: Stuttgart,
(
(
2
+
0.36) [M ], 156 (13), 155 (100), 154 (15), 153 (12); HRMS: (EI) m/z calcd
18 210.1408, found 210.1401.
for C16
H
2
006, Vol. 34, 267–268.
12] J. R. During , Z. Yu , C. Zheng , G. Guirguis , J. Phys. Chem. A. 2004,
108, 5353–5364.
13] B. M. Kraft , R. J. Lachicotte , W. D. Jones , J. Am. Chem. Soc. 2001,
123, 10973–10979.
14] L. Mattew , J. Warkentin , J. Am. Chem. Soc. 1986, 108, 7981–7984.
15] D. P. Cox , J. Terpinski , W. Lawrynowicz , J. Org. Chem. 1984, 49,
(1-Cyclobutyl)cyclohexa-2,5-dienyl)benzene (4a″).
R
f
= 0.46 (hex-
ꢀ
1
ane); IR (film): ν (cm ) = 3021, 2964, 2928, 2850, 2814, 1484,
1
1
2
1
448, 1203, 1130, 938, 759, 698, 681; H NMR (300 MHz, CDCl
5 °C, TMS): δ 1.62–1.99 (m, 6H, 3 × CH of cyclobutane),
.99–2.11 (m, 2H, CH CH CH = CH ), 2.66–2.76 (m, 2H,
CH ), 2.85–3.02 (m, 1H, CH of cyclobutane), 5.65
3
,
[
[
H
2
2
2
2
3
216–3219.
(CH = CH)
2
3
2
[
16] Cp* ZrH was introduced in this paper as a reagent of
2
2
4
2
(app dt, J(H,H) = 10.4 Hz, J(H,H) = 2.0 Hz, 2H, (CH = CH) C
hydrodefluorination. Its reactivity against monofluorinated aliphatic
C―F bonds was described to decrease in the order 1° > 2° > 3. In
our hands, the organic layer consisted of 74% of cyclopropylmethyl
fluoride, 24% of cyclobutyl fluoride and 2% of 3-butenyl fluoride.
The purification step was apparently against the reported order of
reactivity given by the authors, and was not carried out.
3
4
(Ph)), 5.90 (app dt, J(H,H) = 10.5 Hz, J(H,H) = 3.3 Hz, 2H,
13
(
CH = CH)
2
CH
2
), 7.10–7.21 (m, 1H, CHPh), 7.26–7.33 (m, 4H, 4 × CHPh);
, 25 °C, TMS): δ = 17.67, 23.69 (2C, 2 × CH
cyclobutane), 26.61, 43.15 ((CH = CH) CH ), 46.25 ((CH = CH) C(Ph)),
24.06 (2C, (CH = CH) CH ), 125.92 (CHPh), 127.30 (2C, 2 × CHPh), 128.29
2C, 2 × CHPh), 130.98 (2C, 2 × (CH = CH) C(Ph)), 147.49 (CPh); MS (70 eV):
C
NMR (75 MHz, CDCl
3
C
2
of
2
2
2
1
(
2
2
[
17] Z. Mo , Q. Zhang , L. Deng , Organometallics. 2012, 31, 6518–6521.
2
+
+
[18] S. Samdal , H. Mollendal , J.-C. Guillemin , J. Phys. Chem. A. 2014, 118,
344–2352.
m/z (%): 211 (0.08) [M + 1], 210 (0.54) [M ], 156 (13), 155 (100), 154
27), 153 (14), 152 (10); HRMS: (EI) m/z calcd for C16 18 210.1408, found
10.1391.
2
(
2
H
[
[
19] D. D. Roberts , J. Org. Chem., Vol. 1970, 35, 4059–4062.
20] S. L. Bogen , S. Ruan , R. Liu , S. Agrawal , J. Pichardo , A. Prongay , B.
Baroudy , A. K. Saksena , V. Girijavallabhan , F. G. Njoroge , Bioorg.
Med. Chem. Lett. 2006, 16, 1621–1627.
Acknowledgements
[
[
[
21] D. D. Roberts , J. Org. Chem. 1965, 30, 23–28.
22] L. Mathew , J. Warkentin , J. Am. Chem. Soc. 1986, 108, 7981–7984.
23] a) J. K. Kochi , J. W. Powers , J. Am. Chem. Soc. 1970, 92, 137–146;
b) C. L. Jenkins , J. K. Kochi , J. Org. Chem. 1971, 36, 3103–3111.
This work was generously supported by the Spanish Ministerio de
Educación y Ciencia (CTQ2011-24165) and the Universidad de Ali-
cante. IB thanks the Instituto de Síntesis Orgánica for financial
support.
[24] In this approach, the anionic rearrangement (k′ ) in Scheme 4 have
r
been purposely set to zero. For the hex-5-enyllithium, the anionic
8
cyclization k′
r
is known to be ca. 10 times slower than the corre-
sponding radical cyclization: W. F. Bayley, J. J. Patricia, V. C.
DelGobbo, R. M. Jarret, P. J. Okarma, J. Org. Chem. 1985, 50, 2000–
REFERENCES
2
003. For the cyclopropylmethyllithium k′
mined, to our best knowledge.
25] Notice that this splitting is mathematically exact given that [RAH]/
r
has not been deter-
[
1] The involvement of these dianions has been proposed only in a lim-
ited number of studies: Li : a) J. Smid, J. Am. Chem. Soc. 1965,
7, 655–656; b) R. Benken, H. Günther, Helv. Chim. Acta 1988, 71,
94–702; c) M. Yus, R. P. Herrera, A. Guijarro, Chem. Eur. J. 2002, 8,
574–2584. Li 10; d W. Huber , A. May , K. Müllen , Chem. Ber.
981, 114, 1318–1336; e J. J. Eisch , J. Org. Chem. 1963, 28, 707–710.
2] C. Melero, R. P. Herrera, A. Guijarro, M. Yus, Chem. Eur. J. 2007, 13,
0096–100107.
2 10 8
C H
[
8
6
2
[
[
R′AH] = [RH]/[R′H], which is the case in here since both equal to
R·]/[R′·]. The chemical meaning of this is more subtle and entails
2 12
C H
that both kred and kcoupl are the same for R· and R′·. This is cus-
tomarily accepted in radical probe experiments, since the final
products are never the radical themselves, but some final stable
products derived from them. Dealing with only one set of con-
stants (kred and kcoupl) is an acceptable approximation implicit in
Scheme 4 that simplifies much the model. In any case, the
toughest test for the model comes at the limit of diffusion con-
1
[
1
[
[
3] C. Melero , A. Guijarro , M. Yus , Dalton Trans. 2009, 1286–1289.
4] a S. Irle , H. Lischka , J. Chem. Phys. 1995, 103, 1508–1522; b M. de la
Viuda , M. Yus , A. Guijarro , J. Phys. Chem. B. 2011, 115, 14610–14616.
5] a) The pair Li(s)/Li(H2O) is the most negative among alkali metals,
+
[
x
trolled reactions of R· and R′· with Li A. This limiting case is also
with a standard potential E°(Li/Li+) = –3.04 V, in water relative to
SHE: CRC Handbook of Chemistry and Physics, 85th ed. (Ed: DR Lide),
considered and explained later in this work.
J. Phys. Org. Chem. 2015
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc