NJC
Paper
catalyst in safe media under mild conditions was employed to
obtain products in good to excellent yields. Comparison of the
alcohol oxidation and C–H activation activity of this catalyst
with those of other complexes shows a good to nice activity of
this complex. Some other reports of alcohol oxidation protocols,
shown in the Results and discussion part, suffer from usage of
high amounts of catalyst and TEMPO, and some expensive
bases such as DABCO, as well as C-H activation protocols, which
are performed under hard conditions, using additives or a high
amount of catalyst or bases.
6 (a) W. Kaim, Inorg. Chem., 2011, 50, 9752–9765; (b) K. P. Butin,
E. K. Beloglazkina and N. V. Zyk, Russ. Chem. Rev., 2005, 74,
531–553; (c) B. Butschke, K. L. Fillman, T. Bendikov, L. J. Shimon,
Y. Diskin-Posner, G. Leitus, S. I. Gorelsky, M. L. Neidig and
D. Milstein, Inorg. Chem., 2015, 54, 4909–4926; (d) C. N. Verani,
S. Gallert, E. Bill, T. Weyherm u¨ ller, K. Wieghardt and
P. Chaudhuri, Chem. Commun., 1999, 1747–1748; (e) S. Itoh,
M. Taki and S. Fukuzumi, Coord. Chem. Rev., 2000, 198, 3–20;
( f ) Y. Wang, J. L. DuBois, B. Hedman, K. O. Hodgson and
T. Stack, Science, 1998, 279, 537–540; (g) Y. Wang and T. Stack,
J. Am. Chem. Soc., 1996, 118, 13097–13098; (h) P. Chaudhuri,
M. Hess, U. Fl ¨o rke and K. Wieghardt, Angew. Chem., 1998,
Conflicts of interest
1
10, 2340–2343; (i) P. Chaudhuri, M. Hess, J. M u¨ ller,
K. Hildenbrand, E. Bill, T. Weyherm u¨ ller and K. Wieghardt,
J. Am. Chem. Soc., 1999, 121, 9599–9610; ( j) Gabriel M. Duarte,
Jason D. Braun, Patrick K. Giesbrecht and David E. Herbert,
Dalton Trans., 2017, 46, 16439–16445; (k) V. Lyaskovskyy and
B. de Bruin, ACS Catal., 2012, 2, 270–279; (l) P. Sarkar and
C. Mukherjee, Dalton Trans., 2018, 47, 13337–13341; (m) G. C.
Paul, K. Das, S. Maity, S. Begum and H. K. Srivastava, Inorg.
Chem., 2019, 583, 1782–1793.
(a) S. Kokatam. The Coordination Chemistry of Redox Non-
innocent O-aminophenol and Dithiolene Ligands with Transi-
tion Metal Ions, 2006; (b) S. E. Balaghi, E. Safaei, L. Chiang,
E. W. Wong, D. Savard, R. M. Clarke and T. Storr, Dalton
Trans., 2013, 42, 6829–6839; (c) Z. Alaji, E. Safaei, L. Chiang,
R. M. Clarke, C. Mu and T. Storr, Eur. J. Inorg. Chem., 2014,
There are no conflicts to declare.
Acknowledgements
The authors are grateful to Shiraz University, and Nicolaus
Copernicus University for partial support under Center for Excellence
in Research and the BRAIN interdisciplinary research group (AW).
E. Safaei is thankful for the financial support of Iran National
Science Foundation (INSF)-Grant No. 91002093. Special thanks
go to Prof. Andrey Starikov, Prof. John F. Berry, Dr Ekhardt Bill,
Dr Zvonko Jagli ˇc i ´c , Dr Saeid Zakavi and Dr Touraj Karimpour for
their valuable help.
7
6
2
066–6074; (d) S. Ghorai and C. Mukherjee, Chem. – Asian J.,
014, 9, 3518–3524; (e) A. Rajput, A. Saha, S. K. Barman,
References
1
(a) P. J. Chirik and K. Wieghardt, Science, 2010, 327, 794–795;
b) P. L. Holland, Acc. Chem. Res., 2008, 41, 905–914; (c) B. De
F. Lloretd and R. Mukherjee, Dalton Trans., 2019, 48,
1795–1813; ( f ) R. Rakshit and C. Mukherjee, Eur. J. Inorg.
Chem., 2016, 2731–2737; (g) R. Rakshit, S. Ghorai, S. Biswas
and C. Mukherjee, Inorg. Chem., 2014, 53, 3333–3337;
(h) A. V. Piskunov, I. V. Ershova, M. V. Gulenova, K. I.
Pashanova, A. S. Bogomyakov, I. V. Smolyaninov, G. K. Fukin
and V. K. Cherkasov, Russ. Chem. Bull., 2015, 64, 642–649;
(i) G. C. Paul, K. Das, S. Maity, S. Begum, H. K. Srivastava and
C. Mukherjee, Inorg. Chem., 2018, 58, 1782–1793; ( j) M. K.
Mondal and C. Mukherjee, Dalton Trans., 2016, 45,
13532–13540; (k) A. V. Piskunov, K. I. Pashanova, A. S.
Bogomyakov, I. V. Smolyaninov, N. T. Berberova and G. K.
Fukin, Polyhedron, 2016, 119, 286–292; (l) M. Bubrin, A. Paretzki,
R. H u¨ bner, K. Beyer, B. Schwederski, P. Neugebauer, S. Z ´a li ˇs and
W. Kaim, Z. Anorg. Allg. Chem., 2017, 643, 1621–1627;
(m) E. Safaei, S. E. Balaghi, L. Chiang, R. M. Clarke, M. Webb,
E. W. Y. Wong, D. Savard, C. J. Walsby and T. Storr,, Dalton
Trans., 2019, 48, 13326–13336.
(
Bruin, D. G. Hetterscheid, A. J. Koekkoek and H. Gruetzmacher,
Prog. Inorg. Chem., 2007, 55, 247–354; (d) B. A. Jazdzewski and
W. B. Tolman, Coord. Chem. Rev., 2000, 200, 633–685; (e) P. J.
Chirik, Inorg. Chem., 2011, 50, 9737–9740; ( f ) M. S. Rogers and
D. M. Dooley, Curr. Opin. Chem. Biol., 2003, 7, 189–196;
(
7
g) J. Stubbe and W. A. Van Der Donk, Chem. Rev., 1998, 98,
05–762; (h) J. W. Whittaker, Chem. Rev., 2003, 103, 2347–2364.
2
3
B. De Bruin, P. Gualco and N. D. Paul, Ligand Design in Metal
Chemistry: Reactivity and Catalysis, John Wiley & Sons, 2016,
pp. 176–204.
(a) P. Gamez, I. A. Koval and J. Reedijk, Dalton Trans., 2004,
4079–4088; (b) S. Itoh, S. Takayama, R. Arakawa, A. Furuta,
M. Komatsu, A. Ishida, S. Takamuku and S. Fukuzumi,
Inorg. Chem., 1997, 36, 1407–1416; (c) D. J. Kosman,
M. J. Ettinger, R. E. Weiner and E. J. Massaro, Arch. Biochem.
Biophys., 1974, 165, 456–467; (d) M. Whittaker and J. W.
Whittaker, J. Biol. Chem., 1990, 265, 9610–9613; (e) N. Ito,
S. E. V. Phillips, C. Stevens, Z. B. Ogel, M. J. McPherson,
8 C. Glaser, Chem. Ber., 1869, 2, 422–424.
9 C. Glaser, Liebigs Ann., 1870, 154, 137–171.
J. N. Keen, K. D. S. Yadav and P. F. Knowles, Nature, 1991, 10 A. S. Hay, J. Org. Chem., 1960, 25, 1275–1276.
350, 87–90.
11 G. Eglinton and A. R. Galbraith, Chem. Ind., 1956, 28,
4
5
(a) F. Himo, L. A. Eriksson, F. Maseras and P. E. Siegbahn,
736–737.
J. Am. Chem. Soc., 2000, 122, 8031–8036; (b) J. W. Whittaker, 12 G. Eglinton and A. R. Galbraith, J. Chem. Soc., 1959, 889–896.
Chem. Rev., 2003, 103, 2347–2363.
13 G. Eglinton, Adv. Org. Chem., 1963, 4, 225–328.
N. Ito, S. E. Phillips, K. D. Yadav and P. F. Knowles, J. Mol. 14 (a) A. Sagadevan, V. P. Charpe, A. Ragupathi and K. C.
Biol., 1994, 238, 794–814.
Hwang, J. Am. Chem. Soc., 2017, 139, 2896; (b) N. Orozco,
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020
New J. Chem.