censored models with endogenous regressors
931
where
ꢋ
ꢌ
2
ꢒ = limE Eꢂmꢂw ꢆw ꢃꢀw ꢃ
i
j
j
ꢅ
ꢇ
2
1
2
ꢁ
2
=
E 1ꢂꢁ ≥ 0ꢃ−
ꢓꢉꢂzꢍꢀꢃꢓꢉꢂzꢍꢀꢃ f ꢂzꢃ 1ꢂz ∈ T ꢃꢄ
j
This gives the form of the limiting normal distribution given in the statement of the theorem. Q.E.D.
Proof of Lemma 17: This is an immediate consequence of Lemma 10.
Q.E.D.
Proof of Lemma 18: Up to terms of o ꢂ1ꢃ, one can replace ꢒ sequentially
p
ꢅ
ꢅ
ꢇ
ꢇ
n
ˆ
1
4
1 ꢊ
ꢉ ꢂz ꢍꢀꢃ
0 i
2
ˆ
ˆ
ꢁ
f ꢂz ꢃ ꢓꢉ ꢂz ꢍꢀꢃꢓꢉ ꢂz ꢍꢀꢃ G
ꢆ
ꢆ
i
0
i
0
i
∗
n
h
i=1
n
1
4
1 ꢊ
ꢉ ꢂz ꢍꢀꢃ
0 i
2
ꢁ
f ꢂz ꢃ ꢓꢉ ꢂz ꢍꢀꢃꢓꢉ ꢂz ꢍꢀꢃ G
i
0
i
0
i
∗
n
h
i=1
n
1
4
1 ꢊ
2
ꢁ
f ꢂz ꢃ ꢓꢉ ꢂz ꢍꢀꢃꢓꢉ ꢂz ꢍꢀꢃ 1ꢂꢉ ꢂz ꢍꢀꢃ ≥ 0ꢃꢆ
i
0
i
0
i
0
i
n
i=1
2
ꢁ
Ef ꢂzꢃ ꢓꢉ ꢂzꢍꢀꢃꢓꢉ ꢂzꢍꢀꢃ 1ꢂꢉ ꢂzꢍꢀꢃ ≥ 0ꢃꢄ
0
0
0
The proof is very similar to those of Lemma 17 and Lemma 10.
Q.E.D.
REFERENCES
Ai, C., and X. Chen (2000): “Efficient Estimation of Models with Conditional Moment Restrictions
Containing Unknown Functions,” Working Paper.
Amemiya, T. (1979): “The Estimation of a Simultaneous-Equation Tobit Model,” International Eco-
nomic Review, 20, 169–181.
(
1981): “Two Stage Least Absolute Deviations Estimators,” Econometrica, 50, 689–711.
Andrews, D. W. K., and M. Schafgans (1998): “Semiparametric Estimation of the Intercept of
a Sample Selection Model,” Review of Economic Studies, 65, 487–517.
Blundell, R., and J. Powell (2000): “Endogeneity in Nonparametric and Semiparametric
Regression Models,” Working Paper.
Blundell, R., and J. Smith (1989): “Estimation in a Class of Simultaneous Equation Limited
Dependent Variable Models,” Review of Economic Studies, 56, 37–57.
(
1994): “Coherency and Estimation in Simultaneous Models with Censored or Qualitative
Dependent Variables,” Journal of Econometrics, 64, 355–373.
Chernozhukov, V., and C. Hansen (2001): “An IV Model of Quantile Treatment Effects,” MIT
Working Paper.
Heckman, J. (1978): “Dummy Endogenous Variables in a Simultaneous Equation System,” Econo-
metrica, 46, 931–960.
Honoré, B., and L. Hu (1999): “Estimation of Cross Sectional and Panel Data Censored Regres-
sion Models with Endogeneity,” Princeton University Working Paper.
Horowitz, J. L. (1998): “Bootstrap Methods for Median Regression Models,” Econometrica, 66,
1327–1352.
Manski, C. F. (1988): Analog Estimation Methods in Econometrics. London: Chapman and Hall.
Manski, C. F., and E. T. Tamer (2002): “Inference on Regressions with Interval Data on a Regres-
sor or Outcome,” Econometrica, 70, 519–547.
Newey, W. (1994): “Kernel Estimation of Partial Means and a General Variance Estimator,” Econo-
metric Theory, 10, 233–253.