Organic & Biomolecular Chemistry
Paper
ideal carbon dioxide functionalization, Chem. Sci., 2019,
10, 3905–3926; (f) M. Aresta, F. Nocito and A. Dibenedetto,
Advances in Catalysis, Elsevier, 2018, vol. 62, pp. 49–111;
(g) N. A. Tappe, R. M. Reich, V. D’Elia and F. E. Kühn,
Current advances in the catalytic conversion of carbon
dioxide by molecular catalysts: an update, Dalton Trans.,
2018, 47, 13281–13313.
2 (a) T. Niemi and T. Repo, Antibiotics from Carbon Dioxide:
Sustainable Pathways to Pharmaceutically Relevant Cyclic
Carbamates, Eur. J. Org. Chem., 2019, 1180–1188;
(b) M. R. Barbachyn, in Topics in Medicinal Chemistry, vol
26: Antibacterials, ed. J. Fisher, S. Mobashery and M. Miller,
Springer, Cham, 2017, pp. 97–121; (c) C. A. Zaharia,
S. Cellamare and C. D. Altomare, Oxazolidinone Amide
Antibiotics, From Bioactive Carboxylic Compound Classes, ed.
C. Lamberth and J. Dinges, 2016, pp. 149–166;
(d) P. S. Jadhavar, M. D. Vaja, T. M. Dhameliya and
A. K. Chakraborti, Oxazolidinones as Anti-tubercular
Agents: Discovery, Development and Future Perspectives,
Curr. Med. Chem., 2015, 22, 4379–4397; (e) N. Pandit,
R. K. Singla and B. Shrivastava, Current Updates on
Oxazolidinone and Its Significance, Int. J. Med. Chem.,
2012, DOI: 10.1155/2012/159285.
J. L. Payne, M. Vishe, N. D. Schley and J. N. Johnston,
Catalytic, Catalytic, Enantioselective Synthesis of Cyclic
Carbamates from Dialkyl Amines by CO2 Capture:
−
Discovery, Development, and Mechanism, J. Am. Chem.
Soc., 2019, 141, 618–625; (e) T. Niemi, J. E. Perea-Buceta,
I. Fernandez, S. Alakurtti, E. Rantala and T. Repo, Direct
Assembly of 2-Oxazolidinones by Chemical Fixation of
Carbon Dioxide, Chem. – Eur. J., 2014, 20, 8867–8871.
7 (a) M. Tamura, M. Honda, Y. Nakagawa and K. Tomishige,
Direct conversion of CO2 with diols, aminoalcohols and
diamines to cyclic carbonates, cyclic carbamates and cyclic
ureas using heterogeneous catalysts, J. Chem. Technol.
Biotechnol., 2014, 89, 19–33; (b) C. J. Dinsmore and
S. P. Mercer, Synthesis of New Bicyclic P–N Ligands and
Their Application in Asymmetric Pd-Catalyzed π-Allyl
Alkylation and Heck Reaction, Org. Lett., 2004, 6, 2885–
2888; (c) J.-F. Qin, B. Wang and G.-Q. Lin, Silver(I)-catalysed
carboxylative cyclisation of primary propargylic amines in
neat water using potassium bicarbonate as a carboxyl
source: an environment-friendly synthesis of Z-5-alkyli-
dene-1,3-oxazolidin-2-ones, Green Chem., 2019, 21, 4656–
4661.
8 (a) A. Hosseinian, S. Ahmadi, R. Mohammadi, A. Monfared
and Z. Rahmani, Three-component reaction of amines,
epoxides, and carbon dioxide: A straightforward route to
organic carbamates, J. CO2 Util., 2018, 27, 381–389;
(b) U. R. Seo and Y. K. Chung, Potassium phosphate-cata-
lyzed one-pot synthesis of 3-aryl-2-oxazolidinones from
epoxides, amines, and atmospheric carbon dioxide, Green
Chem., 2017, 19, 803–808.
3 (a) M. M. Heravi, V. Zadsirjan and B. Farajpour,
Applications of oxazolidinones as chiral auxiliaries in the
asymmetric alkylation reaction applied to total synthesis,
RSC Adv., 2016, 6, 30498–30551; (b) M. M. Heravi and
V. Zadsirjan, Oxazolidinones as chiral auxiliaries in asym-
metric aldol reactions applied to total synthesis,
Tetrahedron: Asymmetry, 2013, 24, 1149–1188.
4 (a) S. Wang and C. Xi, Recent advances in nucleophile-trig-
gered CO2-incorporated cyclization leading to heterocycles,
Chem. Soc. Rev., 2019, 48, 382–404; (b) S. Arshadi,
A. Banaei, S. Ebrahimiasl, A. Monfared and E. Vessally,
9 H. Li, H. Feng, F. Wang and L. Huang, Carboxyl Transfer of
α-Keto Acids toward Oxazolidinones via Decarboxylation/
Fixation of Liberated CO2, J. Org. Chem., 2019, 84, 10380–
10387.
Solvent-free incorporation of CO2 into 2-oxazolidinones: a 10 T. Niemi, J. E. Perea-Buceta, I. Fernandez, O.-M. Hiltunen,
review, RSC Adv., 2019, 9, 19465–19482; (c) B. Yu and
L.-N. He, Upgrading carbon dioxide by incorporation into
heterocycles, ChemSusChem, 2015, 8, 52–62; (d) H. Li,
H. Guo, Z. Fang, T. M. Aida and R. L. Smith Jr.,
Cycloamination strategies for renewable N-heterocycles,
Green Chem., 2020, 22, 582–611.
5 Y. Kayaki, M. Yamamoto, T. Suzuki and T. Ikariya,
Carboxylative cyclization of propargylamines with super-
critical carbon dioxide, Green Chem., 2006, 8, 1019–1021.
6 (a) P. Garcia-Dominguez, L. Fehr, G. Rusconi and
V. Salo, S. Rautiainen, M. T. Räisänen and T. Repo, A One-
Pot Synthesis of N-Aryl-2-Oxazolidinones and Cyclic
Urethanes by the Lewis Base Catalyzed Fixation of Carbon
Dioxide into Anilines and Bromoalkanes, Chem. – Eur. J.,
2016, 22, 10355–10359.
11 J. K. Mannisto, A. Sahari, K. Lagerblom, T. Niemi,
M. Nieger, G. Sztanj and T. Repo, One-Step Synthesis of
3,4-Disubstituted 2-Oxazolidinones by Base-Catalyzed CO2
Fixation and Aza-Michael Addition, Chem. – Eur. J., 2019,
25, 10284–10289.
C. Nevado, Palladium-catalyzed incorporation of atmos- 12 (a) G. Bresciani, E. Antico, G. Ciancaleoni, S. Zacchini,
pheric CO2: efficient synthesis of functionalized oxazolidi-
nones, Chem. Sci., 2016, 7, 3914–3918; (b) X.-T. Gao,
C.-C. Gan, S.-Y. Liu, F. Zhou, H.-H. Wu and J. Zhou,
Utilization of CO2 as a C1 Building Block in a Tandem
G. Pampaloni and F. Marchetti, Bypassing the Inertness of
Aziridine/CO2 Systems to Access 5-Aryl-2-Oxazolidinones:
Catalyst-Free Synthesis Under Ambient Conditions,
ChemSusChem, 2020, 13, 5586–5594; (b) G. Bresciani,
S. Zacchini, L. Famlonga, G. Pampaloni and F. Marchetti,
Trapping carbamates of α -Amino acids: One-Pot and cata-
lyst-free synthesis of 5-Aryl-2-Oxazolidinonyl derivatives,
J. CO2 Util., 2021, 47, 101495.
Asymmetric
A3
Coupling-Carboxylative
Cyclization
Sequence to 2-Oxazolidinones, ACS Catal., 2017, 7, 8588–
8593; (c) Z. Zhang, J.-H. Ye, D.-S. Wu, Y.-Q. Zhou and
D.-G. Yu, Synthesis of Oxazolidin-2-ones from Unsaturated
Amines with CO2 by Using Homogeneous Catalysis, Chem. 13 K. J. Lamb, I. D. V. Ingram, M. North and M. Sengoden,
– Asian J., 2018, 13, 2292–2306; (d) R. Yousefi, T. J. Struble,
Valorization of Carbon Dioxide into Oxazolidinones by
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 4152–4161 | 4159