NaTure CHemISTry
Articles
28. Evano, G. & Blanchard, N. Copper-Mediated Cross-Coupling Reactions
references
(Wiley, New Jersey, 2014).
1. Knochel, P. & Molander, G. A. Comprehensive Organic Synthesis 2nd edn
(Elsevier, Amsterdam, 2014).
29. Shaughnessy, K. H., Ciganek, E. & DeVasher, R. B. Copper-Catalyzed
Amination of Aryl and Alkenyl Electrophiles (Wiley, New Jersey, 2017).
30. Díez-González, S. in Advances in Organometallic Chemistry (ed. Pérez, P. J.)
93–141 (Academic, 2016).
31. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings
induced by visible light. Science 351, 681–684 (2016).
32. Yoshikai, N. & Nakamura, E. Mechanisms of nucleophilic organocopper(i)
reactions. Chem. Rev. 112, 2339–2372 (2012).
2. de Meijere, A., Bräse, S. & Oestreich, M. Metal-Catalyzed Cross-Coupling
Reactions and More (Wiley-VCH, Weinheim, 2014).
3. Girard, S. A., Knauber, T. & Li, C.-J. Te cross-dehydrogenative coupling of
Csp3–H bonds: a versatile strategy for C–C bond formations. Angew. Chem.
Int. Ed. 53, 74–100 (2014).
4. Trost, B. M. & Li, C.-J. Modern Alkyne Chemistry: Catalytic and Atom-
Economic Transformations (Wiley-VCH, Weinheim, 2015).
5. Dieck, H. A. & Heck, F. R. Palladium catalyzed synthesis of aryl, heterocyclic
and vinylic acetylene derivatives. J. Organomet. Chem. 93, 259–263 (1975).
6. Cassar, L. Synthesis of aryl- and vinyl-substituted acetylene derivatives
by the use of nickel and palladium complexes. J. Organomet. Chem. 93,
253–257 (1975).
33. Pérez García, P. M., Ren, P., Scopelliti, R. & Hu, X. Nickel-catalyzed direct
alkylation of terminal alkynes at room temperature: a hemilabile pincer
ligand enhances catalytic activity. ACS Catal. 5, 1164–1171 (2015).
34. Yi, J., Lu, X., Sun, Y.-Y., Xiao, B. & Liu, L. Nickel-catalyzed Sonogashira
reactions of non-activated secondary alkyl bromides and iodides. Angew.
Chem. Int. Ed. 52, 12409–12413 (2013).
35. Vechorkin, O., Barmaz, D., Proust, V. & Hu, X. Ni-catalyzed Sonogashira
coupling of nonactivated alkyl halides: orthogonal functionalization of alkyl
iodides, bromides, and chlorides. J. Am. Chem. Soc. 131, 12078–12079 (2009).
36. Wang, Z. et al. Sonogashira reactions of alkyl halides catalyzed by NHC
[CNN] pincer nickel(ii) complexes. New J. Chem. 42, 11465–11470 (2018).
37. Luo, F.-X. et al. Cu-catalyzed alkynylation of unactivated C(sp3)–X bonds with
terminal alkynes through directing strategy. Org. Lett. 18, 2040–2043 (2016).
38. Fantin, M., Lorandi, F., Gennaro, A., Isse, A. A. & Matyjaszewski, K. Electron
transfer reactions in atom transfer radical polymerization. Synthesis 49,
3311–3322 (2017).
39. Leophairatana, P., Samanta, S., De Silva, C. C. & Koberstein, J. T. Preventing
alkyne–alkyne (i.e., Glaser) coupling associated with the ATRP synthesis of
alkyne-functional polymers/macromonomers and for alkynes under click (i.e.,
CuAAC) reaction conditions. J. Am. Chem. Soc. 139, 3756–3766 (2017).
40. Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric
dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).
41. Sladojevich, F., Trabocchi, A., Guarna, A. & Dixon, D. J. A new family of
cinchona-derived amino phosphine precatalysts: application to the highly
enantio- and diastereoselective silver-catalyzed isocyanoacetate aldol reaction.
J. Am. Chem. Soc. 133, 1710–1713 (2011).
7. Sonogashira, K., Tohda, Y. & Hagihara, N. A convenient synthesis of
acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes,
iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975).
8. Chinchilla, R. & Nájera, C. Te Sonogashira reaction: a booming
methodology in synthetic organic chemistry. Chem. Rev. 107,
874–922 (2007).
9. Eckhardt, M. & Fu, G. C. Te frst applications of carbene ligands in
cross-couplings of alkyl electrophiles: Sonogashira reactions of unactivated
alkyl bromides and iodides. J. Am. Chem. Soc. 125, 13642–13643 (2003).
10. Altenhof, G., Würtz, S. & Glorius, F. Te frst palladium-catalyzed
Sonogashira coupling of unactivated secondary alkyl bromides. Tetrahedron
Lett. 47, 2925–2928 (2006).
11. Hornillos, V. et al. Synthesis of axially chiral heterobiaryl alkynes via dynamic
kinetic asymmetric alkynylation. Chem. Commun. 52, 14121–14124 (2016).
12. Cui, X.-Y. et al. (Guanidine)copper complex-catalyzed enantioselective
dynamic kinetic allylic alkynylation under biphasic condition. J. Am. Chem.
Soc. 140, 8448–8455 (2018).
13. Harada, A., Makida, Y., Sato, T., Ohmiya, H. & Sawamura, M. Copper-
catalyzed enantioselective allylic alkylation of terminal alkyne
pronucleophiles. J. Am. Chem. Soc. 136, 13932–13939 (2014).
14. Hamilton, J. Y., Sarlah, D. & Carreira, E. M. Iridium-catalyzed enantioselective
allylic alkynylation. Angew. Chem. Int. Ed. 52, 7532–7535 (2013).
15. Dabrowski, J. A., Gao, F. & Hoveyda, A. H. Enantioselective synthesis of
alkyne-substituted quaternary carbon stereogenic centers through NHC–Cu-
catalyzed allylic substitution reactions with (i-Bu)2(alkynyl)aluminum
reagents. J. Am. Chem. Soc. 133, 4778–4781 (2011).
42. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity,
substitution patterns, and frequency of nitrogen heterocycles among U.S.
FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).
43. Berliner, M. A., Cordi, E. M., Dunetz, J. R. & Price, K. E. Sonogashira
reactions with propyne: facile synthesis of 4-hydroxy-2-methylbenzofurans
from iodoresorcinols. Org. Process Res. Dev. 14, 180–187 (2010).
44. Schobert, H. Production of acetylene and acetylene-based chemicals from
coal. Chem. Rev. 114, 1743–1760 (2014).
16. Choi, J. & Fu, G. C. Transition metal–catalyzed alkyl-alkyl bond formation:
another dimension in cross-coupling chemistry. Science 356,
eaaf7230 (2017).
45. John, J. Global acetylene gas market will expand revenue USD 6 Bn by 2020.
SBWire (15 March 2015).
17. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a
radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).
18. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and
enantiospecifc transition-metal-catalyzed cross-coupling reactions of
organometallic reagents to construct C–C bonds. Chem. Rev. 115,
9587–9652 (2015).
46. Schwarzwalder, G. M., Matier, C. D. & Fu, G. C. Enantioconvergent
cross-couplings of alkyl electrophiles: the catalytic asymmetric synthesis of
organosilanes. Angew. Chem. Int. Ed. 58, 3571–3574 (2019).
47. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in
drug design. J. Med. Chem. 54, 2529–2591 (2011).
19. Hazra, A., Lee, M. T., Chiu, J. F. & Lalic, G. Photoinduced copper-catalyzed
coupling of terminal alkynes and alkyl iodides. Angew. Chem. Int. Ed. 57,
5492–5496 (2018).
48. Armstrong, M. K., Goodstein, M. B. & Lalic, G. Diastereodivergent
reductive cross coupling of alkynes through tandem catalysis: Z- and
E-selective hydroarylation of terminal alkynes. J. Am. Chem. Soc. 140,
10233–10241 (2018).
20. Voronin, V. V., Ledovskaya, M. S., Bogachenkov, A. S., Rodygin, K. S. &
Ananikov, V. P. Acetylene in organic synthesis: recent progress and new uses.
Molecules 23, E2442 (2018).
49. Elford, T. G., Nave, S., Sonawane, R. P. & Aggarwal, V. K. Total synthesis of
(+)-erogorgiaene using lithiation–borylation methodology, and stereoselective
synthesis of each of its diastereoisomers. J. Am. Chem. Soc. 133,
16798–16801 (2011).
50. Wu, L. et al. Asymmetric synthesis of (R)-ar-curcumene, (R)-4,7-dimethyl-l-
tetralone, and their enantiomers via cobalt-catalyzed asymmetric Kumada
cross-coupling. Tetrahedron: Asymmetry 27, 78–83 (2016).
21. Trotus, I.-T., Zimmermann, T. & Schüth, F. Catalytic reactions of acetylene:
a feedstock for the chemical industry revisited. Chem. Rev. 114,
1761–1782 (2014).
22. Sasaki, H., Boyall, D. & Carreira, E. M. Facile, asymmetric addition of
acetylene to aldehydes: in situ generation of reactive zinc acetylide. Helv.
Chim. Acta 84, 964–971 (2001).
51. Bianco, G. G. et al. (+)- and (−)-Mutisianthol: frst total synthesis, absolute
confguration, and antitumor activity. J. Org. Chem. 74, 2561–2566 (2009).
52. Kamal, A., Shaheer Malik, M., Azeeza, S., Bajee, S. & Shaik, A. A. Total
synthesis of (R)- and (S)-turmerone and (7S,9R)-bisacumol by an efcient
chemoenzymatic approach. Tetrahedron: Asymmetry 20, 1267–1271 (2009).
53. Schaub, T. A. & Kivala, M. in Metal-Catalyzed Cross-Coupling Reactions and
More (eds de Meijere, A., Bräse, S. & Oestreich, M.) 665–762 (Wiley-VCH,
2014).
23. Sato, Y., Nishimata, T. & Mori, M. Asymmetric synthesis of isoindoline and
isoquinoline derivatives using nickel(0)-catalyzed [2+2+2] cocyclization.
J. Org. Chem. 59, 6133–6135 (1994).
24. Shibata, T., Arai, Y. & Tahara, Y.-k Enantioselective construction of
quaternary carbon centers by catalytic [2+2+2] cycloaddition of 1,6-enynes
and alkynes. Org. Lett 7, 4955–4957 (2005).
25. Kong, J. R. & Krische, M. J. Catalytic carbonyl Z-dienylation via
multicomponent reductive coupling of acetylene to aldehydes and
α-ketoesters mediated by hydrogen: carbonyl insertion into cationic
rhodacyclopentadienes. J. Am. Chem. Soc. 128, 16040–16041 (2006).
26. Heller, B. et al. Phosphorus-bearing axially chiral biaryls by catalytic
asymmetric cross-cyclotrimerization and a frst application in asymmetric
hydrosilylation. Chem. Eur. J. 13, 1117–1128 (2007).
54. Zuidema, E. & Bolm, C. Sub-mol% catalyst loading and ligand-acceleration in
the copper-catalyzed coupling of aryl iodides and terminal alkyenes. Chem.
Eur. J. 16, 4181–4185 (2010).
Acknowledgements
27. Skucas, E., Kong, J. R. & Krische, M. J. Enantioselective reductive coupling
of acetylene to N-arylsulfonyl imines via rhodium catalyzed C–C bond-
forming hydrogenation: (Z)-dienyl allylic amines. J. Am. Chem. Soc. 129,
7242–7243 (2007).
Financial support for this work was provided by the National Natural Science Foundation
of China (grant nos. 21722203, 21831002 and 21801116), Shenzhen Special Funds (grant
nos. JCYJ20170412152435366 and JCYJ20170307105638498) and Shenzhen Nobel Prize
Scientists Laboratory Project (grant no. C17783101).
1165