Organic & Biomolecular Chemistry
Paper
Glaser−Hay reaction. These mechanistic insights also led to a
better understanding of hydrogen peroxide as the source of
9 L. Wang and P. G. Schultz, Angew. Chem., Int. Ed., 2004, 44,
34–66.
the previously observed protein degradation. Furthermore, we 10 C. Liu, P. Schultz, R. Kornberg, C. Raetz, J. Rothman and
successfully demonstrated that the addition of catalase to the J. Thorner, Annu. Rev. Biochem., 2010, 79, 413–444.
Glaser−Hay bioconjugation improves coupling and reduces 11 D. D. Young and P. G. Schultz, ACS Chem. Biol., 2018, 13,
protein degradation. We further investigated the impact of 854–870.
various nitrogenous ligands on the Glaser−Hay bioconjuga- 12 P. Siemsen, R. Livingston and F. Diederich, Angew. Chem.,
tion, identifying 2,2′-biquinoline (4) as a promising ligand for Int. Ed., 2000, 39, 2633–2657.
future use. Finally, we illustrated the feasibility and applica- 13 J. S. Lampkowski, J. K. Villa, T. S. Young and D. D. Young,
bility of a streamlined approach to conducting the Glaser−Hay Angew. Chem., Int. Ed., 2015, 54, 9343–9346.
bioconjugation through carrying out the reaction on the cell 14 J. C. Maza, Z. M. Nimmo and D. D. Young, Chem.
lysate or during protein purification, eliminating secondary Commun., 2016, 52, 88–91.
purification required via conducting the reaction post- 15 Z. M. Nimmo, J. F. Halonski, L. E. Chatkewitz and
expression purification. Overall, these improvements further D. D. Young, Bioorg. Chem., 2018, 76, 326–331.
the utility of the Glaser−Hay bioconjugation reaction to facili- 16 T. Nizami and R. Hua, Molecules, 2014, 19, 13788–13802.
tate a covalently-linked, stable, and linear bioconjugate.
17 H. Sun, X. Wu and R. Hua, Tetrahedron Lett., 2011, 52,
4408–4411.
18 L. Yang and R. Hua, Chem. Lett., 2013, 42, 769–771.
19 D. Yu, F. de Azambuja, T. Gensch, C. Daniliuc and
F. Glorius, Angew. Chem., Int. Ed., 2014, 53, 9650–9654.
20 B. Pigulski, P. Mecik, J. Cichos and S. Szafert, J. Org. Chem.,
2017, 82, 1487–1498.
Conflicts of interest
There are no conflicts to declare.
21 A. P. Silvestri, P. A. Cistrone and P. E. Dawson, Angew.
Chem., Int. Ed., 2017, 56, 10438–10442.
Acknowledgements
22 F. Bohlmann, H. Schonowsky, G. Grau and E. Inhoffen,
Chem. Ber., 1964, 97, 794–800.
23 L. Fomina, B. Vazquez, E. Tkatchouk and S. Fomine,
Tetrahedron, 2002, 58, 6741–6747.
24 M. Vilhelmsen, J. Jensen, C. Tortzen and M. Nielsen,
Eur. J. Org. Chem., 2013, 701–711.
25 J. M. Curley, R. W. Lenz, R. C. Fuller, S. E. Browne,
C. B. Gabriell and S. Panday, Polymer, 1997, 38, 5313–
5319.
CRT and LEM would like to acknowledge support from the
Arnold and Mabel Beckman Foundation through the Beckman
Scholars Program. DDY would like to acknowledge funding
from the National Institute of General Medical Sciences of the
NIH (R15GM113203) and the Camille and Henry Dreyfus
Foundation (TH-17-020). We would also like to thank Prof.
Peter Schultz for providing the pEvol plasmids employed in
this study. We would also like to thank Prof. Robert Hinkle
and Prof. William McNamara for assistance with kinetic
experiments.
26 C. Medson, A. J. Smallridge and M. A. Trewhella, J. Mol.
Catal. B: Enzym., 2001, 11, 879–903.
27 D. L. Green, S. Jayasundara, Y. F. Lam and M. T. Harris,
J. Non-Cryst. Solids, 2003, 316, 1666–1179.
28 J. S. Oh, M. H. Choi and S. C. Yoon, J. Microbiol.
Biotechnol., 2005, 15, 1330–1336.
29 M. C. Salon, G. Gerbaud, M. Abdelmouleh, C. Bruzzese,
S. Boufi and M. N. Belgacem, Magn. Reson. Chem., 2007, 45,
473–483.
30 G. Ren, X. Cui, E. Yang, F. Yang and Y. Wu, Tetrahedron,
2010, 66, 4022–4028.
31 J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302–
1315.
32 A. Makarem, R. Berg, F. Rominger and B. F. Straub, Angew.
Chem., Int. Ed., 2015, 54, 7431–7435.
33 C. Klingelhoeffer, U. Kämmerer, M. Koospal, B. Mühling,
M. Schneider, M. Kapp, A. Kübler, C. T. Germer and
C. Otto, BMC Complementary Altern. Med., 2012, 12, 61.
Notes and references
1 G. T. Hermanson, Bioconjugate Techniques, Academic Press,
London, UK, 3rd edn, 1996.
2 K. Lang and J. Chin, Chem. Rev., 2014, 114, 4764–4806.
3 E. L. Sievers and P. D. Senter, Annu. Rev. Med., 2013, 64,
15–29.
4 J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon,
Nat. Biotechnol., 2003, 21, 47–51.
5 X. Gao, Y. Cui, R. M. Levenson, L. W. Chung and S. Nie,
Nat. Biotechnol., 2004, 22, 969–976.
6 P. Agarwal and C. R. Bertozzi, Bioconjugate Chem., 2015, 26,
176–192.
7 N. Stephanopoulos and M. Francis, Nat. Chem. Biol., 2011,
7, 876–884.
8 T. S. Young and P. G. Schultz, J. Biol. Chem., 2010, 285, 34 J. A. Simpson, K. H. Cheeseman, S. E. Smith and
11039–11044.
R. T. Dean, Biochem. J., 1988, 254, 519–523.
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem.