D
S. Masui et al.
Letter
Synlett
that the β-isomer is kinetically favored because of neigh-
boring participation, whereas the α-isomer is thermody-
namically favored because of the anomeric effect.
In summary, we achieved Fisher glycosidation under
flow conditions using HO-SAS as a solid acid catalyst. In this
system, both kinetically favored furanosides and thermody-
namically favored pyranosides were obtained through con-
trol of the reaction temperature and the residence time. We
successfully demonstrated that flow Fischer glycosidation
can be a powerful and practical method to prepare furano-
sides.
(11) Lubineau, A.; Fischer, J.-C. Synth. Commun. 1991, 21, 815.
(12) Santra, S.; Jonas, E.; Bourgault, J.-P.; El-Baba, T.; Andreana, P. R.
J. Carbohydr. Chem. 2011, 30, 27.
(13) Ferrières, V.; Bertho, J.-N.; Plusquellec, D. Tetrahedron Lett.
1995, 36, 2749.
(14) (a) Newman, S. G.; Jensen, K. F. Green Chem. 2013, 15, 1456.
(b) Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem. Int. Ed.
2015, 54, 6688.
(15) Ratner, D. M.; Murphy, E. R.; Jhunjhunwala, M.; Snyder, D. A.;
Jensen, K. F.; Seeberger, P. H. Chem. Commun. 2005, 578.
(16) (a) Tanaka, S.-I.; Goi, T.; Tanaka, K.; Fukase, K. J. Carbohydr.
Chem. 2007, 26, 369. (b) Tanaka, K.; Fujii, Y.; Tokimoto, H.; Mori,
Y.; Tanaka, S.-I.; Bao, G.-M.; Siwu, E. R. O.; Nakayabu, A.; Fukase,
K. Chem. Asian J. 2009, 4, 574. (c) Uchinashi, Y.; Nagasaki, M.;
Zhou, J.; Tanaka, K.; Fukase, K. Org. Biomol. Chem. 2011, 9, 7243.
(d) Uchinashi, Y.; Tanaka, K.; Manabe, Y.; Fujimoto, Y.; Fukase, K.
J. Carbohydr. Chem. 2014, 33, 55.
(17) Tanaka, K.; Mori, Y.; Fukase, K. J. Carbohydr. Chem. 2009, 28, 1.
(18) Tanaka, K.; Miyagawa, T.; Fukase, K. Synlett 2009, 1571.
(19) (a) Tanaka, K.; Motomatsu, S.; Koyama, K.; Tanaka, S.-I.; Fukase,
K. Org. Lett. 2007, 9, 299. (b) Furuta, A.; Hirobe, Y.; Fukuyama,
T.; Ryu, I.; Manabe, Y.; Fukase, K. Eur. J. Org. Chem. 2017, 1365.
(20) (a) Gholamzadeh, P.; Mohammadi Ziarani, G.; Lashgari, N.;
Badiei, A.; Asadiatouei, P. J. Mol. Catal. A: Chem. 2014, 391, 208.
(b) Mohammadi Ziarani, G.; Lashgari, N.; Badiei, A. J. Mol. Catal.
A: Chem. 2015, 397, 166.
Funding Information
This work was financially supported in part by JSPS KAKENHI Grant
Number 15H05836 in Middle Molecular Strategy, JSPS KAKENHI
Grant Number 16H01885, JSPS KAKENHI Grant Number 16H05924,
and JSPS KAKENHI Grant Number 18H04620.
J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(1
5
H
0
5
8
3
6)J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(1
6
H
0
1
8
8
5)J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(1
6
H
0
5
9
2
4)J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(1
8
H
0
4
6
2
0)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(21) (a) Agirrezabal-Telleria, I.; Requies, J.; Güemez, M. B.; Arias, P. L.
Appl. Catal., B 2012, 115, 169. (b) Crisci, A. J.; Tucker, M. H.;
Dumesic, J. A.; Scott, S. L. Top. Catal. 2010, 53, 1185. (c) Crisci, A.
J.; Tucker, M. H.; Lee, M.-Y.; Jang, S. G.; Dumesic, J. A.; Scott, S. L.
ACS Catal. 2011, 1, 719. (d) Jeong, G. H.; Kim, E. G.; Kim, S. B.;
Park, E. D.; Kim, S. W. Microporous Mesoporous Mater. 2011,
144, 134. (e) Liu, B.; Zhang, Z. RSC Adv. 2013, 3, 12313.
(f) Saravanamurugan, S.; Riisager, A. Catal. Commun. 2012, 17,
71. (g) Shi, X.; Wu, Y.; Yi, H.; Rui, G.; Li, P.; Yang, M.; Wang, G.
Energies 2011, 4, 669. (h) Tucker, M. H.; Crisci, A. J.; Wigington,
B. N.; Phadke, N.; Alamillo, R.; Zhang, J.; Scott, S. L.; Dumesic, J.
A. ACS Catal. 2012, 2, 1865. (i) van der Graaff, W. N. P.; Olvera, K.
G.; Pidko, E. A.; Hensen, E. J. M. J. Mol. Catal. A: Chem. 2014, 388,
81.
(22) Lourenço, J. P.; Macedo, M. I.; Fernandes, A. Catal. Commun.
2012, 19, 105.
(23) Sasidharan, M.; Bhaumik, A. J. Mol. Catal. A: Chem. 2013, 367, 1.
(24) Kureshy, R. I.; Ahmad, I.; Pathak, K.; Khan, N. H.; Abdi, S. H. R.;
Jasra, R. V. Catal. Commun. 2009, 10, 572.
tions of HO-SAS for flow esterification, see: Furuta, A.;
Fukuyama, T.; Ryu, I. Bull. Chem. Soc. Jpn. 2017, 90, 607.
(26) General Procedure
References and Notes
(1) Peltier, P.; Euzen, R.; Daniellou, R.; Nugier-Chauvin, C.;
Ferrières, V. Carbohydr. Res. 2008, 343, 1897.
(2) (a) de Lederkremer, R. M.; Colli, W. Glycobiology 1995, 5, 547.
(b) Pedersen, L. L.; Turco, S. J. Cell. Mol. Life Sci. 2003, 60, 259.
(c) Lucia, M.-P.; Adriane, R. T.; Norton, H.; Orlando, A. A.;
Wagner, B. D.; Jose, O. P. Curr. Org. Chem. 2008, 12, 926.
(d) Richards, M. R.; Lowary, T. L. ChemBioChem 2009, 10, 1920.
(e) Umesiri, F. E.; Sanki, A. K.; Boucau, J.; Ronning, D. R.;
Sucheck, S. J. Med. Res. Rev. 2010, 30, 290.
(3) Imamura, A.; Lowary, T. Trends Glycosci. Glycotechnol. 2011, 23,
134.
(4) (a) Completo, G. C.; Lowary, T. L. J. Org. Chem. 2008, 73, 4513.
(b) Green, J. W.; Pacsu, E. J. Am. Chem. Soc. 1937, 59, 1205.
(c) McAuliffe, J. C.; Hindsgaul, O. J. Org. Chem. 1997, 62, 1234.
(d) Timmer, M. S. M.; Stocker, B. L.; Seeberger, P. H. J. Org. Chem.
2006, 71, 8294.
(5) (a) D'Accorso, N. B.; Thiel, I. M. E.; Schüller, M. Carbohydr. Res.
1983, 124, 177. (b) Gallo-Rodriguez, C.; Varela, O.; de Leder-
kremer, R. M. Carbohydr. Res. 1997, 305, 163. (c) Lee, R. E.;
Mikusova, K.; Brennan, P. J.; Besra, G. S. J. Am. Chem. Soc. 1995,
117, 11829.
(6) Varela, O.; Marino, C.; de Lederkremer, R. M. Carbohydr. Res.
1986, 155, 247.
(7) Furneaux, R. H.; Rendle, P. M.; Sims, I. M. J. Chem. Soc., Perkin
Trans. 1 2000, 2011.
(8) Shi, Z.; Sun, L.; Li, C. J. Agric. Food. Chem. 2014, 62, 3287.
(9) (a) Fischer, E. Ber. Dtsch. Chem. Ges. 1893, 26, 2400. (b) Fischer,
E. Ber. Dtsch. Chem. Ges. 1895, 28, 1145. (c) Fischer, E.; Beensch,
L. Ber. Dtsch. Chem. Ges. 1894, 27, 2478.
(10) (a) Arasappan, A.; Fraser-Reid, B. Tetrahedron Lett. 1995, 36,
7967. (b) Ferrières, V.; Bertho, J.-N.; Plusquellec, D. Carbohydr.
Res. 1998, 311, 25. (c) Haworth, W. N.; Porter, C. R. J. Chem. Soc.
(Res.) 1929, 2796. (d) Velty, R.; Benvegnu, T.; Gelin, M.; Privat,
E.; Plusquellec, D. Carbohydr. Res. 1997, 299, 7.
A flow reactor system consisting of syringe pump, column (φ
4.0 mm × 50 mm, filled with HO-SAS (350 mg, 0.9–1.0 mmol/g
loading of SO3H), backpressure regulator and tubes (inner diam-
eter φ = 50 μm, length L1 = 40 cm, L2 = 10 cm, L3 = 20 cm) was
used. A solution of glucose (1, 90 mg, 0.5 mmol) in methanol (5
mL, 0.10 M glucose solution) was filled in the syringe. The
syringe was pumped using the syringe pump at flow rates of 0.1
mL/min (residence time = 5 min), and the reaction solution was
passed through the column filled with HO-SAS. After the reac-
tion solution came out, the solution was send to the waste for 3
min (priming time = 3 min). Then, the solution was collected for
10 min. After concentration in vacuo, the crude mixture was
analyzed by NMR spectroscopy. New HO-SAS was packed each
experiments except for the experiments in Scheme 2.
Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D