10.1002/chem.201804267
Chemistry - A European Journal
FULL PAPER
electron microscope. Energy-dispersive X-ray (EDS) spectra were
obtained using a JEOL-2100 at an accelerating voltage of 200 kV. High-
resolution transmission electron microscope (HRTEM) images were
[3]
[4]
[5]
[6]
[7]
[8]
[9]
Liu, X.C. Wang, Chem. Soc. Rev. 2014, 43, 5234-5244.
D.J. Martin, G.G. Liu, S.J.A. Moniz, Y.P. Bi, A.M. Beale, J.H. Ye, J.W.
Tang, Chem. Soc. Rev. 2015, 44, 7808-7828.
recorded on
a
JEM-2100 electron microscope operated at an
accelerating voltage of 200 kV. In situ electron paramagnetic resonance
(EPR) measurement was took in an Endor spectrometer (JEOL ES-
ED3X). The g factor was obtained by taking the signal of manganese as
standard. The electron spin resonance (ESR) signals of radicals spin-
trapped by spin-trap reagent DMPO (5, 5′- dimethyl -1-pirroline-N-oxide)
(Sigma Chemical Co.) in water were examined on a Bruker model ESR
JES-FA200 spectrometer equipped with a quanta-Ray Nd: YAG laser
system as the irradiation source (λ > 410 nm). To minimize experimental
errors, the same type of quartz capillary tube was used for all ESR
measurements. Raman spectra were recorded by using a Horiba Jobin-
Yvon LabRam HR800 Raman microspectrometer, with laser excitation at
320 nm. The UV-Vis diffuse reflectance spectra (UV-Vis-DRS) of the
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 2016,
116, 7159-7329.
Environ. 2017, 202, 611-619.
2015, 51, 6655-6658.
Z. Dai, F. Qin, H.P. Zhao, F. Tian, Y.L. Liu, R. Chen, Nanoscale 2015, 7,
11991-11999.
D.J. Wang, H.D. Shen, L. Guo, F. Fu, Y.C. Liang, New J. Chem. 2016,
40, 8614-8624.
[10] C.S. Guo, J. Xu, S.F. Wang, L. Li, Y. Zhang, X.C. Li, CrystEngComm
2012, 14, 3602-3608.
samples
were
obtained
using
Shimadzu
UV-2550
UV-Vis
[11] G.H. Tian, Y.J. Chen, W. Zhou, K. Pan, Y.Z. Dong, C.G. Tian, H.G. Fu,
J. Mater. Chem. 2011, 21, 887-892.
spectrophotometer. BaSO4 was used as a reflectance standard. Room-
temperature photoluminescence spectra (PL) and time-resolved
photoluminescence spectra (TR-PL) were detected with
FLTCSPC fluorescence spectrophotometer.
[12] S. Yuan, Y. Zhao, W.B. Chen, C. Wu, X.Y. Wang, L.N. Zhang, Q. Wang,
ACS Appl. Mater. Interfaces 2017, 9, 21781-21790.
a Horiba
[13] Y. Zheng, T.F. Zhou, X.D. Zhao, W.K. Pang, H. Gao, S.A. Li, Z. Zhou,
H.K. Liu, Z.P. Guo, Adv. Mater. 2017, 29, 1700396-1700404.
[14] X.L. Wu, J.N. Hart, X.M. Wen, L. Wang, Y. Du, S.X. Dou, Y.H. Ng, R.
Amal, J. Scott, ACS Appl. Mater. Interfaces 2018, 10, 9342-9352.
[15] J.L. Lv, J.F. Zhang, J. Liu, Z. Li, K. Dai, C.H. Liang, ACS Sustainable
Chem. Eng. 2018, 6, 696-706.
Measurements of photocatalytic activity
Phenol and 4-NP were used as probe organic pollutants to assess the
photocatalytic activities. 400W halogen lamp (Nanjing XuJiang
A
[16] X.C. Meng, Z.S. Zhang, Appl. Catal. B: Environ. 2017, 209, 383-393.
[17] X.X. Chang, T. Wang, P. Zhang, J.J. Zhang, A. Li, J.L. Gong, J. Am.
Chem. Soc. 2015, 137, 8356-8359.
electrical and mechanical plant, Nanjing, P. R. China) with a 420 nm
cutoff filter was chosen as the visible light source. The suspension
containing 200 mg of photocatalyst and 200 mL of 10 mg·L-1 phenol or 4-
NP (1.0 gcat/Lsolution) fresh aqueous solution was continuously stirred in the
dark for 30 min to establish an adsorption/desorption equilibrium of
phenol or 4-NP solution. After this period of time, the light source was
turned on. During the reaction, 5.0 mL of samples was taken at given
time intervals and the photocatalysts were then separated by
centrifugation. The residual concentration of phenol in solution was
estimated using absorption at 507 nm by a Shimadzu 2550 UV-visible
spectrophotometer following the 4-aminoantipyrine colorimetric method.
The remaining concentration of 4-NP was monitored using a Shimadzu
2550 UV-visible spectrophotometer at the wavelength of 318 nm. TOC in
the phenol solution was recorded by automatic total organic carbon
analyzer (VARIO, Elementar, Germany).
[18] Z. Dai, F. Qin, H.P. Zhao, J. Ding, Y.L. Liu, R. Chen, ACS Catal. 2016,
6, 3180-3192.
[19] G.M. Wang, Y.C. Ling, Y. Li, Nanoscale 2012, 4, 6682-6691.
[20] J. Liao, L. Chen, M. Sun, B. Lei, X. Zeng, Y. Sun, F. Dong, Chin. J.
Catal. 2018, 4, 779-789
[21] M.L. Guan, C. Xiao, J. Zhang, S.J. Fan, R. An, Q.M. Cheng, J.F. Xie, M.
Zhou, B.J. Ye, Y. Xie, J. Am. Chem. Soc. 2013, 135, 10411-10417.
[22] Y.Y. Zhu, Q. Ling, Y.F. Liu, H. Wang, Y.F. Zhu, Appl. Catal. B: Environ.
2016, 187, 204-211.
[23] J. Ding, Z. Dai, F. Qin, H.P. Zhao, S. Zhao, R. Chen, Appl. Catal. B:
Environ. 2017, 205, 281-291.
[24] J. Ding, Z. Dai, F. Tian, B. Zhou, B. Zhao, H.P. Zhao, Z.Q. Chen, Y.L.
Liu, R. Chen, J. Mater. Chem. A 2017, 5, 23453-23459.
[25] Y.H. Lv, Y.F. Liu, Y.Y. Zhu, Y.F. Zhu, J. Mater. Chem. A 2014, 2, 1174-
1182.
[26] S.X. Yu, Y.H. Zhang, F. Dong, M. Li, T.R. Zhang, H.W. Huang, Appl.
Catal. B: Environ. 2018, 226, 441-450.
Acknowledgements
[27] M. Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, Q. Zhang, D.
Qin, Y.N. Xia, Chem. Rev. 2011, 111, 3669-3712.
This work was supported by the National Natural Science
Foundation of China (No. 21663030, 21666039) and the Project
of Science & Technology Office of Shaanxi Province (No.
2018TSCXL-NY-02-01, 2015SF291) and Natural Science
Program of the Education Department of Shaanxi Province (No.
15JS119).
[28] Y.G. Sun, Chem. Soc. Rev. 2013, 42, 2497-2511.
Han, Adv. Mater. 2012, 24, 2310-2314.
[30] V. Vaianoa, M. Matarangoloa, J.J. Murciab, H. Rojasb, J.A. Navíoc,
M.C. Hidalgo, Appl. Catal. B: Environ. 2018, 225, 197-206.
630.
Keywords: Oxygen vacancy-rich Ag/Bi2MoO6 • Surface oxygen
vacancy • Surface plasmon resonance • Synergistic effect •
Phenol and 4-nitrophenol degradation
[32] X.X. Chen, Y.P. Li, X.Y. Pan, D. Cortie, X.T. Huang, Z.G. Yi, Nat.
Commun. 2016, 7, 12273-12281.
[33] L.L. Wang, M. Yu, C.L. Wu, N. Deng, C. Wang, X.Q. Yao, Adv. Synth.
Catal. 2016, 358, 2631-2641.
[34] J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, Y. Huang, Z.G. Chen, H.M. Li,
Appl. Catal. B: Environ. 2016, 188, 376-387.
[1]
[2]
Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H.S. Williams, H.
Yang, J.Y. Cao, W.J. Luo, Z.S. Li, Y. Liu, R.L. Withers, Nat. Mater.
2010, 9, 559-564.
[35] X.N. Wang, R. Long, D. Liu, D. Yang, C.M. Wang, Y.J. Xiong, Nano
Energy 2016, 24, 87-93.
S. J. A. Moniz, J. Tang, ChemCatChem, 2015, 7, 1659-1667..
[36] C.C. Li, T. Wang, Z.J. Zhao, W.M. Yang, J.F. Li, A. Li, Z.L. Yang, G.A.
Ozin, J.L. Gong, Angew. Chem. Int. Ed. 2018, 19, 5376-5380.
This article is protected by copyright. All rights reserved.