Table 1 Results of reaction of 2, 3, 5 and 6 with nucleophiles
dd, J 3.3, 11.9), 7.10–7.84 (m, 30H); dC(100.40 MHz, CDCl3) 68.08 (C-6),
72.10, 73.21, 74.64, 76.67, 79.14 (C-4), 79.20 (C-2), 81.13 (C-3), 84.28
(C-5), 92.79 (C-1), 127.41–128.24 (Ar-C), 130.31–132.40 (Ar-C),
137.57–138.40 (Ar-C); dP(161.70 MHz, CDCl3) 32.50. For 5: mp 101–103
°C; [a]D +65.7 (c 1.4, CHCl3); dH(270 MHz, CDCl3) 1.55–1.63 (1H, m, JPH
15.2), 2.14–2.28 (1H, m, JPH 15.2), 3.61–3.78 (4H, m), 3.89–3.99 (2H, m),
4.15–4.41 (4H, m), 4.44 (1H, d, J 11.87), 4.52 (1H, d, J 11.87), 4.56 (1H,
d, J 11.87), 4.63 (1H, d, J 11.21), 4.71 (1H, d, J 11.87), 4.80 (1H, d, J 10.56),
4.84 (1H, d, J 11.22), 4.94 (1H, d, J 11.22), 5.85 (1H, dd, J 10.56, 3.30),
7.13–7.37 (20H, m); dC(67.8 MHz, CDCl3) 25.84 (1C, d, J 7.01), 68.14,
68.65 (d, J 7.01), 68.86 (d, J 7.01), 75.51, 76.94, 79.03, 94.78,
127.60–128.09 (Ar-C), 137.50–138.47 (Ar-C); dP(109.25 MHz, CDCl3)
210.99; m/z (EI) 660.6 (M+) (Found: C, 67.4; H, 6.3; P, 4.7. C37H41O9P
requires C, 67.3; H, 6.3; P, 4.7%). For 6: (selected features) dH(270 MHz,
CDCl3) 5.24 (1H, app t, J 13.19, 7.26); dC(67.8 MHz, CDCl3) 98.44;
dP(109.25 MHz, CDCl3) 210.60. For 7 (Nu = OBu): mp 69–71 °C; [a]D
+16.5 (c 1.3, CHCl3); dH(270 MHz, CDCl3) 0.91 (3H, t, J 7.26), 1.35–1.71
(4H, m), 3.41–3.50 (2H, m), 3.52–3.69 (4H, m), 3.73 (1H, dd, J 10.55, 1.98),
3.97 (1H, dt, J 12.53, 5.93), 4.39 (1H, d, J 7.91, H-1), 4.51 (1H, d, J 11.21),
4.55 (1H, d, J 11.87), 4.61 (1H, d, J 12.54), 4.71 (1H, d, J 10.55), 4.76 (1H,
d, J 11.21), 4.80 (1H, d, J 10.56), 4.91 (1H, d, J 10.55), 4.93 (1H, d, J 10.56),
7.10–7.37 (20H, m); dC(67.8 MHz, CDCl3) 13.85, 19.29, 31.82, 67.88,
69.02, 69.78, 73.45, 74.85, 74.98, 75.66, 77.96, 82.29, 84.72, 103.60 (C-1),
127.58–128.37 (Ar-C), 138.23, 138.32, 138.61, 138.74 (Found M+,
596.3138. C38H44O6 requires 596.3138). For 7 (Nu = 13):12 [a]D +65.5 (c
3.3, CHCl3); dH(270 MHz, CDCl3) 1.99 (3H, s), 2.02 (3H, s), 2.08 (3H, s),
3.29 (3H, s), 3.41–3.55 (3H, m), 3.64–3.80 (2H, m), 3.84–3.97 (4H, m), 4.38
(1H, d, J 8.57), 4.46 (1H, d, J 11.87), 4.49 (1H, d, J 11.87), 4.56 (1H, d, J
11.87), 4.58 (1H, d, J 10.55), 4.64 (1H, d, J 11.21), 4.74 (1H, d, J 11.22),
4.81–4.85 (3H, m), 4.89 (1H, d, J 10.55), 4.91 (1H, d, J 11.21), 5.36 (1H,
app t, J 4.62), 7.03–7.27 (20H, m); dC(67.8 MHz, CDCl3) 20.68, 20.70,
29.59, 66.83, 68.43, 69.51, 70.24, 70.82, 73.15, 74.67, 74.82, 75.12, 75.47,
80.21, 81.27, 82.49, 84.71, 96.61 (C-1A), 102.93 (C-1), 127.52–128.51 (Ar-
C), 137.72, 138.06, 138.34, 138.50, 170.10, 170.29, 170.40.
Phosphinate/
phosphate
Nucleophile Yield (%)a
Ratio 7:8
2
BunOH
BunOH
MeOH
PriOH
9
10
11
12
13
BunOH
MeOH
PriOH
9
10
11
12
13
89
90
94
93
88
94
85
92
84
99
96
98
91
83
88
68
72
2:1
2:1
4:1
3.5:1
2.5:1
1:2
2:1
2:1
3:1
7 only
7:3
7:3
1:2
1:2
4:1
7 only
7 only
2 and 3
2 and 3
2 and 3
2 and 3
2 and 3
2 and 3
2 and 3
2 and 3
5 and 6
5 and 6
5 and 6
5 and 6
5 and 6
5 and 6
5 and 6
5 and 6
a All yields are for isolated products.
1 A. Varki, Glycobiology, 1993, 3, 97.
2 J. Kellerman, F. Lottspeich, A. Henschen and W. Muller-Esterl, Eur.
J. Biochem., 1986, 154, 471; S. Hakomori, Cancer Res., 1985, 45, 2405;
J. Montreuil, Adv. Carbohydr. Chem. Biochem., 1980, 37, 157.
3 N. Sharon, Trends Biochem. Sci., 1984, 9, 198.
4 G. J. Boons, Tetrahedron, 1996, 52, 1095; K. Toshima and K. Tatsuta,
Chem. Rev., 1993, 93, 1503; K. J. Hale and A. C. Richardson,
Carbohydrates, in The Chemistry of Natural Products, ed. K. H.
Thomson, Blackie, 1993, ch. 1, p. 1.
5 S. Hashimoto, T. Honda and S. Ikegami, Tetrahedron Lett., 1991, 32,
1653; S. Hashimoto, T. Honda and S. Ikegami, Heterocycles, 1990, 30,
775; S. Hashimoto, T. Honda and S. Ikegami, Chem. Pharm. Bull.,
1990, 38, 2323; S. Hashimoto, T. Honda and S. Ikegami, J. Chem. Soc.,
Chem. Commun., 1989, 685.
6 H. Harada, S. Hashimoto, T. Honda and S. Ikegami, Tetrahedron Lett.,
1992, 33, 3523; S. Hashimoto, T. Honda and S. Ikegami, Tetrahedron
Lett., 1990, 31, 4769.
7 T. Inazu and T. Yamanoi, Chem. Lett., 1990, 849; T. Inazu and T.
Yamanoi, Chem. Lett., 1989, 69; T. Inazu, H. Hosokawa and Y. Satoh,
Chem. Lett., 1985, 297.
8 R. Ramage, D. Hopton, M. J. Parrott, G. W. Kenner and G. A. Moore,
J. Chem. Soc., Perkin Trans. 1, 1984, 1357 and references cited
therein.
9 T. R. Fukuto and R. L. Metcalf, J. Med. Chem., 1965, 8, 759; F.
Ramirez, H. Tsuboi, H. Okazaki and R. F. Marecek, Tetrahedron Lett.,
1982, 23, 5375; R. N. Hunston, S. A. Jones, C. McGuigan, T. Richard,
J. Balzarini and E. De Clercq, J. Med. Chem., 1984, 27, 440; E. L. Eliel,
S. Chandraserkaran, L. E. Carpenter II and J. G. Verkade, J. Am. Chem.
Soc., 1986, 108, 6651.
glucose. We were gratified to observe that we had attained our
goal of excellent selectivity in the formation of 7 in the cases
where we employed sugar-derived nucleophiles. This is partic-
ularly encouraing as we have a 2-O-benzyl protecting group
which is non-participating in glycosylation reactions and would
be expected to result in the formation of the a-glycosides. As a
result of these findings one could, in principle, use O-benzyl
protected sugars as starting materials and by changing the
activating group of the glycosyl donor either desired stereo-
isomer can be obtained, thus alleviating the need for differ-
entially protected starting sugars.
We have thus established that tetra-O-benzyl-d-gluco-
pyranose can be converted into O-linked glycosides with high
stereoselectivity in the cases where we employed propane-
1,3-diyl phosphate as the leaving group, adding to the
methodology available for the synthesis of complex carbohy-
drates.
We thank Professor R. Ramage (Edinburgh University) for
helpful discussions and encouragement. We also thank the
EPSRC for access to the mass spectrometry service at the
University of Wales, Swansea (Director, Dr J. A. Ballantine).
10 A. Esswein and R. R. Schmidt, Liebigs Ann. Chem., 1988, 675.
11 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 1983, 41,
27.
12 S. Houdier and P. J. A. Votte´ro, Tetrahedron Lett., 1993, 34, 3283; for
the a-isomer of this compound, see: P. G. Garegg, J.-L. Maloisel and S.
Oscarson, Synthesis, 1995, 409.
Notes and References
† E-mail: gurdial.singh@sunderland.ac.uk
‡ All compounds gave satisfactory spectral and microanalytical data.
Selected data for 2:10 [a]D +83.3 (c 4.3, CHCl3); dH(400 MHz, CDCl3)
3.62–3.77 (4H, m), 3.86–4.07 (2H, m), 4.36 (1H, d, J 11.87), 4.47 (1H, d,
J 10.50), 4.51 (1H, d, J 11.87), 4.60 (1H, d, J 11.22), 4.73 (1H, d, J 11.22),
4.80 (1H, d, J 10.56), 4.85 (1H, d, J 10.56), 4.96 (1H, d, J 11.21), 5.99 (1H,
Received in Liverpool, UK, 6th July 1998; 8/05206I
2130
Chem. Commun., 1998