Regioselective Anomeric Deacetylation of Peracetylated Glycopyranoses
911
The role of methanol could be to act as a co-solvent to solu-
bilize the substrates that otherwise are completely insoluble
in water, even in the presence of copper(ii) acetate.
In conclusion, a new system for selective anomeric
deacetylation has been developed that is simple, mild, and
cheap.
N. Fushimi, K. Tatani, N. Kikuchi, R. Katsuno, M. Isaji, Chem.
Abstr. 2002, 137, 6353m. (d) W. B. Cowden, Chem. Abstr.
2
001, 135, 5765u.
[
4] (a) R. R. Schmidt, J. C. Castro-Palomino, O. Retz, Pure Appl.
Chem. 1999, 71, 729. (b) D. Gin, in Glycochemistry (Eds
P. G. Wang, C. R. Bertozzi) 2001, pp. 33–52 (Marcel Dekker:
New York, NY).
[
5] D. Askin, C. Angst, S. Danishefsky, J. Org. Chem. 1987, 52,
6
22.
6] A. Banaszeh, C. X. Bordas, A. Zamojski, Carbohydr. Res. 1985,
44, 342.
Experimental
[
1
All the reagents were commercially available and used as received. H
1
1
3
and C NMR spectra were recorded on 200 and 500 MHz instruments.
[
7] Y. Kamezono, N. Hanayama, Chem. Abstr. 1987, 129, 149 182a.
8] (a) J. Fiandor, M. T. Garcia-Lopez, F. G. De Las Heras,
P. P. Mendez-Castrillon, Synthesis 1985, 1121. (b) L. Knerr,
X. Pannecoucke, B. Luu, Tetrahedron Lett. 1998, 39, 273.
(c) D. Redoules, J. Perie, Tetrahedron Lett. 1999, 40, 4811.
(d) M. Mikamo, Carbohydr. Res. 1989, 191, 150.
[
Typical Procedure: Anomeric Deacetylation of
Penta-O-acetyl-β- -glucopyranose (Table 1, entry 2)
D
The glucose pentaacetate (0.5 g, 1.28 mmol) was dissolved in 20 mL of
methanol/water (9 : 1). Copper(ii) acetate dihydrate (0.28 g, 1.28 mmol)
was added and the mixture was refluxed for 4 h (monitored by thin layer
chromatography). The reaction mixture was cooled to room tempera-
ture then filtered, and the filtrate was distilled under reduced pressure
to remove methanol. The residue was diluted with 50 mL of water
and extracted (2 × 50 mL) with ethyl acetate. The organic phase was
dried over sodium sulfate and concentrated under reduced pressure.
The viscous residue obtained was purified by dry silica-gel column
chromatography using ethyl acetate/hexane (15 : 85) to yield a syrup
of the anomeric deacetylated product, 0.28 g (67%). δH (CDCl3) 5.44
[9] C. Ferrer Salat, P. Axerio Agneseti, Chem. Abstr. 1977, 87,
23 683k.
[10] J. Zhang, P. J. Kovac, J. Carbohydr. Chem. 1999, 18, 461.
[11] R. M. Rowell, M. S. Feather, Carbohydr. Res. 1967, 4, 486.
[12] (a) R. Khan, P. A. Konowicz, L. Gardossi, M. Matulova, Aust.
J. Chem. 1996, 49, 293. (b) H. C. Kolb, Bioorg. Med. Chem.
Lett. 1997, 7, 2627.
[13] R. Khan, P. A. Konowicz, L. Gardossi, M. Matulova, S. Paoletti,
Tetrahedron Lett. 1994, 35, 4247.
(
4
0.5 H, d, J 4.0, Hα1), 5.26–5.22 (1 H, m, H3), 5.10–5.07 (1 H, m, H4),
.89–4.85 (1 H, m, H2), 4.73 (0.5 H, d, J 8.0, Hβ1), 4.30–4.08 (1 H,
[14] (a) G. Excoffier, D. Gagnaire, J. P. Utille, Carbohydr. Res. 1975,
39, 368. (b) T. Ren, D. Liu, Tetrahedron Lett. 1999, 40, 7621.
[15] N. Kunesch, C. Miet, J. Poisson, Tetrahedron Lett. 1987, 28,
3569.
ꢀ
m, H5), 3.90–3.75 (2 H, m, H6 and H6 ), 2.08–2.00 (12 H, s, CH3CO).
δC (CDCl3) 170.5–168.7 (CH3CO), 95.0 (C1β), 89.0 (C1α), 72.0 (C3),
7
1.7, 70.9 (C2), 69.7 (C4), 66.5 (C5), 61.7 (C6), 20.11 (CH3CO).
[16] K. Watanabe, K. Itoh, Y. Araki, Y. Ishido, Carbohydr. Res.
1
986, 154, 165.
[
[
[
17] T. Sambaiah, P. E. Fanwick, M. Cushman, Synthesis 2001,1450.
18] J. Herzig, A. Nudelman, Carbohyr. Res. 1986, 153, 162.
19] (a) W. J. Hennen, H. M. Sweers, Y. Wang, C. Wong,
J. Org. Chem. 1988, 53, 4939. (b) R. Khan, L. Gropen, P.
A. Konowicz, M. Matulova, S. Paoletti, Tetrahedron Lett. 1993,
Acknowledgments
K.B. wishes to thank UGC, New Delhi, and P.D.S. wishes
to thank CSIR, New Delhi, for fellowships. We gratefully
acknowledge TIFR, Mumbai, for providing the high-field
NMR facility.
3
4, 7767. (c) L. Gardossi, R. Khan, P. A. Konowicz, L. Gropen,
B. S. Paulsen, J. Mol. Catal. B: Enzym. 1999, 6, 89.
[
20] (a) V. O. T. Schmidt, J. Herok, Liebigs Ann. Chem. 1954,
6
3, 587. (b) A. Georg, Helv. Chim. Acta 1932, 15, 924. (c)
References
H. H. Schlubach, I. Wolf, Ber. Dtsch. Chem. Ges. 1929, 62,
1507. (d) J. U. Nef, Liebigs Ann. Chem. 1914, 403, 333. (e)
W. A. Bonner, J. Am. Chem. Soc. 1958, 80, 3372.
[
[
[
1] J. O. Duus, P. M. St. Hilaire, M. Meldal, K. Bock, Pure Appl.
Chem. 1999, 71, 755.
2] J. B. Robbins, R. Schneerson, S. C. Szu, V. Pozsgay, Pure Appl.
Chem. 1999, 71, 745.
3] (a) J. Borowiecka, A. Stanezak, Farmaco 2001, 56, 257. (b)
H. Fujikura, T. Nishimura, N. Fushimi, K. Tatani, M. Isaji,
Chem. Abstr. 2002, 136, 295 018n. (c) H. Fujikura, T. Nishimura,
[21] A. Nudelman, J. Herzig, H. E. Gottlieb, E. Keinan, J. Sterling,
Carbohydr. Res. 1987, 162, 145.
[22] J. Honeyman, in Methods in Carbohydrate Chemistry (Eds,
R. L. Whistler, M. L. Wolfrom) 1965, Vol. II, pp. 95 (Academic
Press: New York, NY).