A. T. Tran et al. / Tetrahedron Letters 49 (2008) 2163–2165
2165
R4
4. Rowell, R. M.; Feather, M. S. Carbohydr. Res. 1967, 4, 486–491.
5. Nudelman, A.; Herzig, J.; Gottlieb, H. E.; Keinan, E.; Sterling, J.
Carbohydr. Res. 1987, 162, 145–152.
R4
R5
R5
O
Ln(OTf)3
O
R3
AcO
R3
AcO
R2
OH
AcO
MeOH, r.t.
OAc
6. Banaszk, A.; Bordas Cornet, X.; Zamojski, A. Carbohydr. Res. 1985,
R1
1
44, 344–345.
1
1
1
1
0. R1 =H, R2 =OAc, R3=OAc, R4 =H,R5=H
1
1
1
4. R3 =OAc, R4 = H, R5=H
5. R3 = H, R4 =OAc, R5=CH2OAc
6. R3= OAc, R4=H, R5=CH2OAc
7. Allen, P. Z. Methods Carbohydr. Chem. 1962, 1, 372–373.
8. Dilhas, A.; Bonnaff e´ , D. Carbohydr. Res. 2003, 338, 681–686.
1. R1 = H, R2= OAc, R3=H, R4=OAc, R5=CH2OAc
2. R1 = H, R2= OAc, R3=OAc, R4=H, R5=CH2OAc
3. R1 = OAc, R2= H, R3=OAc, R4=H, R5=CH2OAc
9
. Jacquinet, J. C.; Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay,
J.; Torri, G.; Sina y¨ , P. Carbohydr. Res. 1984, 130, 221–241.
Scheme 4. A general method for anomeric deacetylation.
1
1
0. Dilhas, A.; Bonnaff e´ , D. Tetrahedron Lett. 2004, 45, 3643–3645.
1. Byramova, N.; Ovchinnikov, M. V.; Backinowsky, L. V.; Kochetkov,
N. K. Carbohydr. Res 1983, 124, C8–C11.
Table 2
12. Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. L. Chem. Rev
2002, 102, 2227–2302.
13. Hanamoto, T.; Sugimoto, Y.; Yokoyama, Y.; Inanaga, J. J. Org.
Chem. 1996, 61, 4491–4492.
Yields obtained for anomeric deacetylation depending on the lanthanide
catalyst used
Starting
material
Products Yb(OTf)
3
Eu(OTf)
3
Sm(OTf)
3
Nd(OTf)
3
1
4. (a) Hamza, D.; Lucas, R.; Feizi, T.; Chai, W.; Bonnaff e´ , D.;
Lubineau, A. Chem. Bio. Chem. 2006, 7, 1856–1858; (b) Lubineau,
A.; Lortat-Jacob, H.; Gavard, O.; Sarrazin, S.; Bonnaff e´ , D. Chem.
1
1
1
1
0
1
2
3
14
15
16
16
85
68
61
67
81
78
62
62
85
82
79
67
81
82
81
68
Eur. J. 2004, 10, 4265–4282.
1
1
5. Compound 5 a/b: H NMR (360 MHz, CDCl
3
): d 5.68 (dd, 1H, J1,2
4
1
0
1
1
1
.5 Hz, J1,OH 6.0 Hz, H-1b), 5.60 (d, 0.5H, J4,5 6.5 Hz, H-5a), 5.39 (d,
H, J4,5 3.0 Hz, H-5b), 5.28 (d, 1H, J1,OH 10.0 Hz, H-1a), 5.21 (d,
.5H, J2,3 1.0 Hz, H-2a), 5.08 (dd, 1H, J2,3 7.0 Hz, H-2b), 4.79 (dd,
0H, J3,4 7.0 Hz, H-4b), 4.73 (d, 0.5H, Jgem 11.0 Hz, Ph–CH), 4.67 (d,
H, Jgem 12.0 Hz, Ph–CH), 4.66 (dd, 0.5H, J3,4 6.0 Hz, H-4a), 4.59 (d,
H, Jgem 12.0 Hz, Ph–CH), 4.55 (d, 0.5H, Jgem 11.0 Hz, Ph–CH), 4.51
Reactions were carried out in anhydr MeOH (6 mL) containing starting
materials (100 mg) and 5 mol % Lx(OTf)
purification.
3
at rt. Yields were obtained after
a lower reactivity of a acetates has been previously
observed in transesterification promoted by tin oxides.
3
(t, 1H, H-3b), 4.19 (br d, 0.5H, H-3a), 3.74 (s, 3H, COOCH ), 3.66 (s,
5
1.8H, COOCH
OCOCH ), 2.13 (s, 3H, OCOCH
90 MHz, CDCl ): d 1 1.2 (C-1a), 94.2 (C-1b), 80.7 (C-3a), 80.0
C-4a), 79.2 (C-3b), 79.0 (C-2a), 77.2 (C-2b), 75.6 (C-4b), 73.3 (CH ),
3.0 (CH ), 70,6 (C-5a, C-5b), 53.0 (COOCH ), 52.5 (COOCH ), 20.8
(OCOCH ), 20.7 (OCOCH ), 20.6 (OCOCH ). C18H22O9 (MW =
3
), 3.53 (d, 0.5H, OHa), 3.10 (d, 1H, OHb), 2.18 (s, 3H,
1
3
3
3 3
), 2.11 (s, 3H, OCOCH ). C NMR
We have, thus, developed an effective method to selec-
tively deacetylate the anomeric position of carbohydrates.
This method, using lanthanide triflate catalyzed transesteri-
fication, is especially valuable when working with uronic
acids methyl esters for whom more classical methods are
(
(
3
2
7
2
3
3
3
3
3
382.1): calcd C 56.54, H 5.80; found C 56.22, H 6.04. ESI-MS calcd
+
3
+
for C18
6. Crystalline methyl-1,2,4-tri-O-acetyl-3-O-benzyl-b-L-idopyranuronate
1) (4.7 g, 11 mmol) was dissolved in MeOH (225 mL) at 0 °C, then
mol % Nd(OTf) (0.332 g, 0.56 mmol) were added to the mixture.
After stirring for 1 h at 0 °C, the reaction was stopped. Water
(300 mL) was added and the compound was extracted with CH Cl
3 Â 200 mL). The organic phase was evaporated and the residue was
purified by column chromatography using a toluene: EtOAc gradient
9
H22NaO [M+Na] m/z = 405.1; found 405.1.
inefficient. Different Lx(OTf) salts were tested and Nd
3
1
gave better yields in most of the cases and thus seems to
be the best catalyst for this reaction. Most importantly, this
approach is a green alternative to previously described pro-
cedures, thanks to the low toxicity of lanthanide salts, the
possibility of recycling the catalyst and the easy and highly
tolerant experimental procedure.
(
5
3
2
2
(
1
(
8:2–7:3) to give 1 (3.75 g, 1.7 mmol, 90%). Compound 2 a/b:
NMR (300 MHz, CDCl ): d 7.4–7.3 (m, 8H, Ph), 5.33 (br d, 1H, J1,OH
6.0 Hz, H-1a), 5.22 (m, 1H, H-2a), 5.2 (br s, 0.6H, H-1b), 5.16 (m,
H
3
Acknowledgements
0
4
4
J
.6H, H-2b), 5.02 (d, 1H, J4,5 2.0 Hz, H-5a), 4.90 (m, 0.6H, H-4b),
.83 (m, 1H, H-4a), 4.82 (d, 1H, Ph–CHa), 4.78 (d, 1H, Ph–CHa),
We thank the Univ-Paris Sud, the CNRS for funding,
the Minist e` re de l’Education Nationale et de la Recherche
for a Ph.D. Grant (A.T.T.) and ENDOTIS-Pharma for a
Ph.D Grant (S.D.) and funding.
.76 (s, 1.2H, Ph–CH
1,OH 9.0 Hz, OH-a), 4.2 (t, 0.6H, J2,3 = J3,4 3 Hz, H-3b), 3.98 (m, 1H,
), 3.79 (s, 1.8H, COOCH ), 2.2–2 (4s,
9.6H, Ac). C NMR (90 MHz, CDCl ): d 170.3–169.0 (C=O), 128.9–
2
b), 4.72 (d, 0.6H, J4,5 2 Hz, H-5b), 4.28 (d, 1H,
H-3a), 3.81 (s, 3H, COOCH
3
3
1
3
3
1
(
6
28.0 (Ph), 93.2 (C-1a), 92.1 (C-1b), 73.7 (CH
C-3b, C-5b), 72.0 (C-3a), 68.3 (C-4b), 67.2 (C-2a, C-2b), 66.8 (C-4a),
5.85 (C-5a), 52.8 (COOCH ), 21.0 (OCOCH ), 20.8 (OCOCH ).
7. Nakajima, R.; Ono, M.; Aiso, S.; Akita, H. Chem. Pharm. Bull. 2005,
3, 684–687.
8. (a) Kramer, S.; Nolting, B.; Ott, A-J.; Vogel, C. J. Carbohydr. Chem.
000, 19, 891–921; (b) Vogel, C.; Boye, H.; Kristen, H. J. Prakt.
Chem. 1990, 332, 28–36.
2 2
), 73.3 (CH ), 72.9
References and notes
3
3
3
1
1
1
. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50,
5
21–123.
2
3
. Helferich, B.; Portz, W. Chem. Ber. 1953, 86, 604.
. Excoffier, G.; Gagnaire, D.; Utille, J. P. Carbohydr. Res. 1975, 39,
2
368–373.