Paper
RSC Advances
2
3
4
B. S. Takale, M. Bao and Y. Yamamoto, Org. Biomol. Chem.,
2014, 12, 2005.
E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy and
M. A. El-Sayed, Chem. Soc. Rev., 2012, 41, 2740.
(a) A. Abad, P. Concepci ´o n, A. Corma and H. Garcia, Angew.
Chem., Int. Ed., 2005, 44, 4066; (b) D. I. Enache, J. K. Edwards,
P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing,
M. Watanabe, C. J. Kiely, D. W. Knight and
G. J. Hutchings, Science, 2006, 311, 362; (c) H. Miyamura,
R. Matsubara, Y. Miyazaki and S. Kobayashi, Angew. Chem.,
Int. Ed., 2007, 46, 4151.
3
Fig. 7 Reuse of MNP@PILAu in the A coupling reaction of phenyl
acetylene, 4-chlorobenzaldehyde and piperidine.
5
(a) C. M. Krauter, A. S. K. Hashmi and M. Pernpointner,
ChemCatChem, 2010, 2, 1226; (b) G. Mazzone, N. Russo
and E. Sicilia, Organometallics, 2012, 31, 3074; (c)
J. Cord ´o n, G. Jim ´e nez-Os ´e s, J. M. L ´o pez-de-Luzuriaga,
M. Monge, M. E. Olmos and D. Pascual, Organometallics,
observation, morpholine and the other aromatic aldehydes
were applied for the three component coupling reactions. As
depicted in Table 2, entry(16–18) aliphatic electron-donor give
3
good to excellent yield to corresponding products. The A
2
014, 33, 3823.
H. A. Wegner and M. Auzias, Angew. Chem., Int. Ed., 2011, 50,
236.
(a) Z. Li, C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239;
b) W. Rao, M. J. Koh, D. Li, H. Hirao and P. W. H. Chan, J.
coupling reaction was investigated with aliphatic aldehydes and
secondary aliphatic amines. As expected the reaction of
aliphatic aldehydes or secondary aliphatic amines proceeded
smoothly to propagylamine products (Table 2, entry 11).
The reusability of MNP@PILAu was investigated by using
phenyl acetylene, 4-chlorobenzaldehyde and piperidine as a
6
7
8
(
Am. Chem. Soc., 2013, 135, 7926; (c) C. Shu, C. B. Chen,
W. X. Chen and L. W. Ye, Org. Lett., 2013, 15, 5542.
A. Corma, A. Leyva-P ´e rez and M. J. Sabater, Chem. Rev., 2011,
3
sample for A reaction under aforementioned optimized
8
9
condition. The yields of products were measured aer 12 h in
each cycle and the separated catalyst was washed, dried for the
next cycle. The recycling process was followed for 10 times
without any signicant diminish at the yields of propargylamine
1
11, 1657.
(a) L. Tang, X. Guo, Y. Yang, Z. Zha and Z. Wang, Chem.
Commun., 2014, 50, 6145; (b) T. Mitsudomea and
K. Kaneda, Green Chem., 2013, 15, 2636; (c) K. Layek,
M. L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasakid
and H. Maheswaran, Green Chem., 2012, 14, 3164.
0 (a) G. Villaverde, A. Corma, M. Iglesias and F. S ´a nchez, ACS
Catal., 2012, 2, 399; (b) A. Corma, J. Navas and M. J. Sabater,
Chem.–Eur. J., 2012, 18, 14150; (c) X. Zhang and A. Corma,
Angew. Chem., Int. Ed., 2008, 47, 4358; (d) C. Wei and
C. J. Li, J. Am. Chem. Soc., 2003, 125, 9584.
(
Fig. 7). In order to investigate metal leaching, AAS analysis was
used. AAS analysis indicated that there is no signicant gold
leaching aer 10 times. According to these observations, the
proposed catalyst not only can be used for three component
coupling reaction but also can be easily separated and reused
for several times without any signicant loss of activity.
1
Conclusion
11 S. Carrettin, P. Concepci ´o n, A. Corma, J. M. L ´o pez Nieto and
V. F. Puntes, Angew. Chem., Int. Ed., 2004, 43, 2538.
In conclusion, we have introduced a new heterogeneous catalyst
based on gold ions immobilized on magnetic poly(imidazole/
imidazolium) for the synthesis of propargylamines. The cata-
lyst is stable under air atmosphere and can readily be recovered
by an external magnetic eld. In order to use vinyl imidazole as
a monomer of polymer, a high level of gold ion was loaded on
MNP@PIL leading to the use of a small quantity (0.005 g) of
catalyst in each reaction. The reaction is simple and followed
under green and mild conditions. This reaction is applicable to
both aromatic/aliphatic alkynes and aldehydes and generates
propargylamine derivatives in good to excellent yields. The
simple synthesis, easy magnetic recovery, excellent reusability
1
2 (a) S. S. Liu, X. Liu, L. Yu, Y. M. Liu, H. Y. He and Y. Cao,
Green Chem., 2014, 16, 4162; (b) M. Boominathan,
N. Pugazhenthiran, M. Nagaraj, S. Muthusubramanian,
S. Murugesan and N. Bhuvanesh, ACS Sustainable Chem.
Eng., 2013, 1, 1405.
1
1
3 (a) H. J. Cho, S. Jung, S. Kong, S. J. Park, S. M. Lee and
Y. S. Lee, Adv. Synth. Catal., 2014, 356, 1056; (b) F. Shi,
Q. Zhang, Y. Ma, Y. He and Y. Deng, J. Am. Chem. Soc.,
2005, 127, 4182.
4 (a) Q. Y. Bi, X. L. Du, Y. M. Liu, Y. Cao, H. Y. He and
K. N. Fan, J. Am. Chem. Soc., 2012, 134, 8926; (b)
X. Zhang, H. Shi and B. X. Xu, Angew. Chem., Int. Ed.,
(up to 10 runs) and high loading of gold ion onto the catalyst
2
005, 44, 7132; (c) J. E. Bailie and G. J. Hutchings, Chem.
surface are some of advantage of the present catalyst which
make it useful in large scale application.
Commun., 1999, 2151.
1
1
5 B. Karimi and F. K. Esfahani, Chem. Commun., 2009, 5555.
6 (a) B. Karimi and F. K. Esfahani, Adv. Synth. Catal., 2012, 354,
1
2
319; (b) B. Karimi and F. K. Esfahani, Chem. Commun.,
011, 47, 10452.
References
1
Y. Ito, M. Sawamura and T. Hayashi, J. Am. Chem. Soc., 1986, 17 X. Shen, X. Fang, H. Zhou and H. Liang, Chem. Lett., 2004,
08, 6405. 33, 1468.
1
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 34502–34510 | 34509