Mod u la r Liga n d s Der ived fr om Am in o
Acid s for th e En a n tioselective Ad d ition of
Or ga n ozin c Rea gen ts to Ald eh yd es
Meaghan L. Richmond and Christopher T. Seto*
F IGURE 1. General design of ligands.
Department of Chemistry, Brown University,
324 Brook Street, Box H, Providence, Rhode Island 02912
strategy that we have developed recently for screening
the enantiomeric excess of chiral secondary alcohols.4
To gain quick access to a diversity of ligands, a modular
system comprised of simple components is essential.
Utilizing amino acids from the chiral pool allows for the
easy incorporation of chirality into the ligands and opens
the way for a number of straightforward chemical
modifications. Amino acids have been used as the basis
for a variety of catalyst systems,5 and ligands that are
based on proline,6 valine,7 tyrosine,8 tryptophan,9 serine,10
and leucine11 have been reported.
We imposed two important restrictions on the design
of these new modular ligands. First, the components
needed to be simple and readily available in order to
facilitate preparation of a number of different analogues.
Second, the reactions that are employed during their
synthesis must be reliable, and they must be accom-
plished with a reasonable yield. The general structure
of the ligands is illustrated in Figure 1. They are derived
from L-amino acids and incorporate both a tertiary amine
and a carbamate or amide functional group. This class
of ligands mimics the very successful chiral â-amino
alcohol-based ligands that have been developed by Soai
and others.1c We have replaced the alcohol moiety of a
â-amino alcohol with a carbamate or amide N-H
group.12,13 We reasoned that this would be an appropriate
substitution because alcohol and carbamate protons have
similar pKa values.14 Deprotonation of the carbamate
provides, in conjunction with the tertiary amine, a good
christopher_seto@brown.edu
Received J une 30, 2003
Abstr a ct: A new series of modular chiral ligands that are
derived from amino acids were prepared and tested for their
ability to catalyze the asymmetric addition of alkylzinc
reagents to aromatic and aliphatic aldehydes. The ligands
contain a tertiary amine, an amino acid side chain, and a
carbamate or amide functional group. One ligand, which was
synthesized from Ile, catalyzes the addition of diethylzinc
to cyclohexanecarboxaldehyde in 99% ee.
The design of catalysts for the asymmetric addition of
organozinc reagents to aldehydes to give chiral secondary
alcohols has been the focus of intensive research.1 A large
number of catalysts for this reaction have been developed
that rely on either a Lewis acidic or Lewis basic strategy
for catalyzing the reaction.2
We are interested in developing new modular chiral
ligands for this reaction. In the long term, we envision
that these modular ligands could serve as the basis for
synthesizing libraries of catalysts3 for reactions involving
alkylzinc, as well as other organometallic reagents. This
work will then be interfaced with a high-throughput
(1) For comprehensive reviews, see: (a) Noyori, R.; Kitamura, M.
Angew. Chem., Int. Ed. Engl. 1991, 30, 49-69. (b) Soai, K.; Niwa, S.
Chem. Rev. 1992, 92, 833-856. (c) Pu, L.; Yu, H.-B. Chem. Rev. 2001,
101, 757-824.
(4) Abato, P.; Seto, C. T. J . Am. Chem. Soc. 2001, 123, 9206-9207.
(5) For a recent review on amino acids and peptides as catalysts,
see: J arvo, E. R.; Miller, S. J . Tetrahedron 2002, 58, 2481-2495.
(6) (a) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J . Am. Chem. Soc.
1987, 109, 7111-7115. (b) Yang, X.; Shen, J .; Da, C.; Wang, R.; Choi,
M. C. K.; Yang, L.; Wong, K.-Y. Tetrahedron: Asymmetry 1999, 10,
133-138. (c) Cicchi, S.; Crea, S.; Goti, A.; Brandi, A. Tetrahedron:
Asymmetry 1997, 8, 293-301. (d) List, B. Tetrahedron 2002, 58, 5537-
5590.
(2) For selected reports, see: (a) Oguni, N.; Omi, T. Tetrahedron
Lett. 1984, 25, 2823-2824. (b) Kitamura, M.; Suga, S.; Kawai, K.;
Noyori, R. J . Am. Chem. Soc. 1986, 108, 6071-6072. (c) Fitzpatrick,
K.; Hulst, R.; Kellogg, R. M. Tetrahedron: Asymmetry 1995, 6, 1861-
1864. (d) Kang, J .; Lee, J . W.; Kim, J . I. J . Chem. Soc., Chem. Commun.
1994, 2009-2010. (e) Chelucci, G.; Conti, S.; Falorni, M.; Giacomelli,
G. Tetrahedron 1991, 47, 8251-8258. (f) Asami, M.; Watanabe, H.;
Honda, K.; Inoue, S. Tetrahedron: Asymmetry 1998, 9, 4165-4173. (g)
Schmidt, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 99-
101. (h) Mori, M.; Nakai, T. Tetrahedron Lett. 1997, 38, 6233-6236.
(i) Zhang, F.-Y.; Chan, A. S. C. Tetrahedron: Asymmetry 1997, 8, 3651-
3655. (j) Yoshioka, M.; Kawakita, T.; Ohno, M. Tetrahedron Lett. 1989,
30, 1657-1660. (k) Paquette, L. A.; Zhou, R. J . Org. Chem. 1999, 64,
7926-7934. (l) Shi, M.; Sui, W.-S. Tetrahedron: Asymmetry 1999, 10,
3319-3325. (m) Soai, K.; Hirose, Y.; Ohno, Y. Tetrahedron: Asymmetry
1993, 4, 1473-1474.
(3) For selected reports, see: (a) Reetz, M. T. Angew. Chem., Int.
Ed. 2001, 40, 284-310. (b) Huttenloch, O.; Laxman, E.; Waldman, H.
Chem. Eur. J . 2002, 8, 4767-4779. (c) Gilbertson, S. R.; Wang, X.
Tetrahedron 1999, 55, 11609-11618. (d) Burguete, M. I.; Collado, M.;
Garcia-Verdugo, E.; Vicent, M. J .; Luis, S. V.; von Keyserling, N. G.;
Martens, J . Tetrahedron 2003, 59, 1797-1804. (e) J acobsen, E. N.;
Francis, M. B. Angew. Chem., Int. Ed. 1999, 38, 937-941. (f) Chataign-
er, I.; Gennari, C.; Piarulli, U.; Ceccarelli, S. Angew. Chem., Int. Ed.
2000, 39, 916-918. (g) Cole, B. M.; Shimizu, K. D.; Kruger, C. A.;
Harrity, J . P.; Snapper, M. L.; Hoveyda, A. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1668-1671.
(7) Delair, P.; Einhorn, C.; Dinhorn, J .; Luche, J . L. Tetrahedron
1995, 51, 165-172.
(8) Beliczey, J .; Giffels, G.; Kragl, U.; Wandrey, C. Tetrahedron:
Asymmetry 1997, 8, 1529-1530.
(9) (a) Dai, W.-M.; Zhu, H. J .; Hao, X.-J . Tetrahedron: Asymmetry
1995, 6, 1857-1860. (b) Dai, W.-M.; Zhu, H. J .; Hao, X.-J . Tetrahedron:
Asymmetry 2000, 11, 2315-2337.
(10) Sibi, M. P.; Chen, J .-X.; Cook, G. R. Tetrahedron Lett. 1999,
40, 3301-3304.
(11) Kawanami, Y.; Mitsuie, T.; Miki, M.; Sakamoto, T.; Nishitani,
K. Tetrahedron 2000, 56, 175-178.
(12) (a) For a review of phosphonamides and sulfonamides as ligands
for the enantioselective reduction of ketones, see: Zhang, J .; Zhou, H.
B.; Xie, R. G. Curr. Org. Chem. 2002, 6, 865-890. (b) Rhyoo, H. Y.;
Young-Ae, Y.; Park, H.-J .; Chung, Y. K. Tetrahedron Lett. 2001, 42,
5045.
(13) Dangel, B. D.; Polt, R. Org. Lett. 2000, 2, 3003-3006.
(14) Bordwell, F. G.; Zhang, X.-M. J . Org. Chem. 1994, 59, 6456-
6458.
10.1021/jo0349375 CCC: $25.00 © 2003 American Chemical Society
Published on Web 08/20/2003
J . Org. Chem. 2003, 68, 7505-7508
7505