7
as mitoxantrone, ametantrone, and doxorubicin, demonstrate
potent antitumor activity and have been used in clinics as
one of the most effective classes of anticancer agents with
broad application in the treatment of several leukemias and
withdrawing nature of the nitro group. The conjugate
addition of naphthoquinone to nitroalkenes is particularly
interesting because it produces nitroalkylated compounds
which are precursors of a variety of other functionalized
bioactive compounds. However, to the best of our knowl-
edge, no studies on the catalytic asymmetric synthesis of
nitroalkylated naphthoquinones has been reported.
As one part of our continuing research program on the
catalytic asymmetric addition of nitroalkane and heteroaro-
4
lymphomas. In view of their important biological features
in medicinal chemistry, a large number of quinone derivatives
and related compounds have been prepared in order to search
for novel bioactive agents with improved pharmacological
8
5
properties.
9
matics to nitroalkenes, we would like to report the first
The asymmetric Michael addition with nitroalkenes as
Michael acceptor is an important C-C bond-forming reac-
tion, which provides access to synthetically useful enan-
tioenriched nitroalkanes and has attracted significant interest
organocatalytic enantioselective Michael addition of 2-hy-
droxynaphthoquinones to nitroalkenes for the direct synthesis
of chiral nitroalkylated naphthoquinone derivatives herein.
Good yields and excellent enantioselectivities (up to >99%
ee) could be achieved for most substrates.
Initially, we studied the model Michael addition reaction
of 2-hydroxy-1,4-naphthoquinone 6a to ꢀ-nitrostyrene 7a by
the catalysis of 10 mol % of a series of readily available
organocatalyst 1-5 (Figure 1) at room temperature. The
6
in recent years. Nitroalkanes can be transformed into a
variety of functionalities due to the strong electron-
(
3) Selected examples: (a) Tandon, V. K.; Chhor, R. B.; Singh, R. V.;
Rai, S.; Yadav, D. B. Bioorg. Med. Chem. Lett. 2004, 14, 1079. (b) Tandon,
V. K.; Yadav, D. B.; Singh, R. V.; Chaturvedi, A. K.; Shukla, P. K. Bioorg.
Med. Chem. Lett. 2005, 15, 5324. (c) Ravelo, A.; EstEvez-Braun, A.;
ChFvez-Orellana, H.; PErez-Sacau, E.; Mesa-Silverio, D. Curr. Top. Med.
Chem. 2004, 4, 241. (d) PErez-Sacau, E.; EstEvez-Braun, A.; Ravelo, A. G.;
Ferro, E. A.; Tokuda, H.; Mukainaka, T.; Nishino, H. Bioorg. Med. Chem.
2
003, 11, 483. (e) de Andrade-Neto, V. F.; Goulart, M. O. F.; da Silva
Filho, J. F.; da Silva, M. J.; Pinto, M. C. F. R.; Pinto, A. V.; Zalis, M. G.;
Carvalho, L. H.; Krettli, A. U. Bioorg. Med. Chem. Lett. 2004, 14, 1145.
(
2
f) Gl a¨ nzel, M.; B u¨ ltmann, R.; Starke, K.; Frahm, A. W. Eur. J. Med. Chem.
003, 38, 303. (g) Gl a¨ nzel, M.; B u¨ ltmann, R.; Starke, K.; Frahm, A. W.
Eur. J. Med. Chem. 2005, 40, 1262. (h) Gomez-Monterrey, I.; Santelli, G.;
Campiglia, P.; Califano, D.; Falasconi, F.; Pisano, C.; Vesci, L.; Lama, T.;
Grieco, P.; Novellino, E. J. Med. Chem. 2005, 48, 1152.
(
4) (a) Lown, J. W., Ed. Anthracycline and Anthracenedione-Based
Anticancer Agents; Elsevier: Amsterdam, The Netherlands, 1988; p 402.
b) Lown, J. W. Pharmacol. Ther. 1993, 60, 185. (c) Scott, L. J.; Figgitt,
(
D. P. CNS Drugs 2004, 18, 379. (d) Galetta, S. L.; Markowitz, C. CNS
Drugs 2005, 19, 239.
(
5) (a) Gomez-Monterrey, I.; Campiglia, P.; Carotenuto, A.; Califano,
D.; Pisano, C.; Vesci, L.; Lama, T.; Bertamino, A.; Sala, M.; Mazzella di
Bosco, A.; Grieco, P.; Novellino, E. J. Med. Chem. 2007, 50, 1787. (b)
Castellano, S.; Bertamino, A.; Gomez-Monterrey, I.; Santoriello, M.; Grieco,
P.; Campiglia, P.; Sbardella, G.; Novellino, E. Tetrahedron Lett. 2008, 49,
5
83. (c) Hsin, L.-W.; Wang, H.-P.; Kao, P.-H.; Lee, O.; Chen, W.-R.; Chen,
Figure 1. Thiourea and cinchona alkaloid organocatalysts.
H.-W.; Guh, J.-H.; Chan, Y.-L.; His, C.-P.; Yang, M.-S.; Li, T.-K.; Lee,
C.-H. Bioorg. Med. Chem. 2008, 16, 1006. (d) Weyler, S.; Baqi, Y.;
Hillmann, P.; Kaulich, M.; Hunder, A. M.; M u¨ ller, I. A.; M u¨ llera, C. E.
Bioorg. Med. Chem. Lett. 2008, 18, 223.
(
6) For selected reviews see: (a) Berner, O. M.; Tedeschi, L.; Enders,
results are presented in Table 1. During the screening of
catalysts, we first performed the reaction by the catalysis of
thiourea catalyst 1 in CH Cl . Gratifyingly, we found that
2 2
the reaction was completed within 12 h and the correspond-
ing addition product was obtained in 82% yield with excellent
enantioselectivity (>99% ee). Thiourea catalyst 2 cannot give
high enantioselectivity. Such a phenomenon can be ascribed
to the lack of tertiary amine groups, which work as the
activator of the pronucleophile. The cinchona alkaloid
D. Eur. J. Org. Chem. 2002, 1877. (b) Tsogoeva, S. B. Eur. J. Org. Chem.
007, 1701. (c) Christoffers, J.; Koripelly, G.; Rosiak, A.; R o¨ ssle, M.
Synthesis 2007, 1279. (d) Sulzer-Moss e´ , S.; Alexakis, A. Chem. Commun.
007, 3123. (e) Vicario, J. L.; Bad ´ı a, D.; Carrillo, L. Synthesis 2007, 2065.
2
2
For recent examples see: (f) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am.
Chem. Soc. 2003, 125, 12672. (g) Okino, T.; Hoashi, Y.; Furukawa, T.;
Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. (h) Li, H.; Wang,
Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906. (i) Li, H.; Wang,
Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew.
Chem., Int. Ed. 2005, 44, 105. (j) Huang, H.; Jacobsen, E. N. J. Am. Chem.
Soc. 2006, 128, 7170. (k) Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org.
Lett. 2006, 8, 2901. (l) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Wang, W. AdV.
Synth. Catal. 2006, 348, 2047. (m) Tsogoeva, S. B.; Wei, S. Chem. Commun.
2
006, 1451. (n) Luo, S.; Zhang, L.; Mi, X.; Qiao, Y.; Cheng, J.-P. J. Org.
(7) (a) Ono, N. The Nitrogroup in Organic Synthesis; Wiley-VCH: New
York, 2001. (c) Barret, A. G. M.; Graboski, G. G. Chem. ReV. 1986, 86,
751.
Chem. 2007, 72, 9350. (o) Terada, M.; Ikehara, T.; Ube, H. J. Am. Chem.
Soc. 2007, 129, 14112. (p) Xiong, Y.; Wen, Y.; Wang, F.; Gao, B.; Liu,
X.; Huang, X.; Feng, X. AdV. Synth. Catal. 2007, 349, 2156. (q) Hayashi,
Y.; Okano, T.; Aratake, S.; Hazelard, D. Angew. Chem., Int. Ed. 2007, 46,
(8) (a) Barcia, J. C.; Otero, J. M.; Est e´ vez, J. C.; Est e´ vez, R. J. Synlett
2007, 1399. (b) Rueping, M.; Sugiono, E.; Merino, E. Angew. Chem., Int.
Ed. 2008, 47, 3046. (c) Shi, M.; Lei, Z. Y.; Zhao, M.-X.; Shi, J.-W.
Tetrahedron Lett. 2007, 48, 5743. (d) Alem a´ n, J.; Richter, B.; Jøgensen,
K. A. Angew. Chem., Int. Ed. 2007, 46, 5515. (e) Alem a´ n, J.; Cabrera, S.;
Maerten, E.; Overgaard, J.; Jøgensen, K. A. Angew. Chem., Int. Ed. 2007,
46, 5520.
4922. (r) Liu, T.-Y.; Cui, H.-L.; Chai, Q.; Long, J.; Li, B.-J.; Wu, Y.; Ding,
L.-S.; Chen, Y.-C. Chem. Commun. 2007, 2228. (s) Wang, J.; Heikkinen,
L. D.; Li, H.; Zu, L.; Jiang, W.; Xie, H.; Wang, W. AdV. Synth. Catal.
2
007, 349, 1052. (t) Vishnumaya; Singh, V. K. Org. Lett. 2007, 9, 1117.
(
u) Liu, K.; Cui, H.-F.; Nie, J.; Dong, K.-Y.; Li, X.-J.; Ma, J.-A. Org. Lett.
007, 9, 923. (v) McCooey, S. H.; Connon, S. J. Org. Lett. 2007, 9, 599.
w) Trost, B. M.; M u¨ ller, C. J. Am. Chem. Soc. 2008, 130, 2438. (x) Zhu,
2
(9) (a) Lu, S.-F.; Du, D.-M.; Xu, J.; Zhang, S.-W. J. Am. Chem. Soc.
2006, 128, 7418. (b) Lu, S.-F.; Du, D.-M.; Xu, J. Org. Lett. 2006, 8, 2115.
(c) Liu, H.; Xu, J.; Du, D.-M. Org. Lett. 2007, 9, 4725. (d) Liu, H.; Lu,
S.-F.; Xu, J.; Du, D.-M. Chem. Asian J., Published online May 21, 2008;
DOI 10.1002/asia.200800071.
(
S.; Yu, S.; Ma, D. Angew. Chem., Int. Ed. 2008, 47, 545. (y) Dodda, R.;
Goldman, J. J.; Mandal, T.; Zhao, C.-G.; Broker, G. A.; Tiekink, E. R. T.
AdV. Synth. Catal. 2008, 350, 537.
2818
Org. Lett., Vol. 10, No. 13, 2008