General experimental procedure
(c) D. Lednicer, Strategies for Organic Drug Synthesis and Design,
2
nd edn, John Wiley & Sons Inc., 2008.
4 (a) T. Inokuchi and H. Kawafuchi, J. Org. Chem., 2006, 71, 947;
b) R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt and L. Sun,
Chem. Mater., 2007, 19, 4007; (c) H. Salim and O. Piva, J. Org.
Chem., 2009, 74, 2257; (d) V. Boucard, Macromolecules, 2001, 34,
A mixture of active methylene compound (8 mmol), aryl
aldehyde (8 mmol) and dry baker’s yeast (2 g) in ethanol
(
(
30 mL) was stirred at room temperature for the specified time.
The progress of the reaction was monitored by thin layer
chromatography using ethyl acetate : pet ether (4 : 6) as an
eluent. After the specified reaction time the reaction content
was filtered through the bed of Celite to remove the yeast.
Ethanol was removed from the filtrate by vacuum distillation
and crude residues were then purified by crystallization from
ethanol (3a–i) and ethanol : DMF (6a–l).
4
E. Cano and E. Sotelo, J. Med. Chem., 2007, 50, 6476.
L. Fernanda, C. C. Leite, R. H. V. Mourao, M. C. A. Lima,
S. L. Galdino, M. Z. Hernandes, F. A. R. Neves, S. Vidal, J. Barbe
and I. R. Pitta, Eur. J. Med. Chem., 2007, 42, 1239.
R. Ottana, R. Maccari, M. L. Barreca, G. Bruno, A. Rotondo,
A. Rossi, G. Chiricosta, R. D. Paola, L. Sautebin, S. Cuzzocrea
and M. G. Vigorita, Bioorg. Med. Chem., 2005, 13, 4243.
R. Maccari, R. Ottana, R. Ciurleo, M. G. Vigorita, D. Rakowitz,
T. Steindl and T. Langer, Bioorg. Med. Chem. Lett., 2007, 17, 3886.
8 R. Maccari, P. Paoli, R. Ottana, M. Jacomelli, R. Ciurleo,
G. Manao, T. Steindl, T. Langer, M. G. Vigorita and G. Camici,
Bioorg. Med. Chem. Lett., 2007, 15, 5137.
308; (e) A. Coelho, E. Ravina, N. Fraiz, M. Yanez, R. Laguna,
5
6
7
All the products are well characterized by the comparison of
1
their spectral ( H-NMR, Mass) and physical data (mp) with
2
3,26
those reported in literature.
1
9
S. V. Bhandari, K. G. Bothara, A. A. Patil, T. S. Chitre,
A. P. Sarkate, S. T. Gore, S. C. Dangre and C. V. Khachane,
Bioorg. Med. Chem. Lett., 2009, 17, 390.
(Z)-5-Benzylidene-2,4-thiazolidinedione (6a).
H-NMR
(
(
300 MHz, DMSO-d ): d 7.48 (m, 5H), 7.79 (s, 1H), 12.64
6
+ +
s, 1H). DART-MS (ESI , m/z): 206 (M ).
1
1
0 D. Kaminsky, B. Zimenkovsky and R. Lesyk, Eur. J. Med. Chem.,
009, 44, 3627.
2
(
Z)-5-(4-Methoxybenzylidene)-2,4-thiazolidinedione
(6b).
1 (a) O. Yoshitata, M. Teruo, N. Mishiko, J. Motoyuki and
K. Norio, Chem. Pharm. Bull., 1992, 40, 907; (b) I. Hitoshi,
K. Hirogas, K. Keiko and K. Hirohiko, US Pat. 489706,
RZhChim., 1991, 10070; (c) W. Hanefeld and M. J. Schlietzer,
J. Heterocycl. Chem., 1995, 32, 1019; (d) Y. Sluka, S. Kadl and
M. Sova, CSFR Pat. 275290, RZhChim., 1994, 2072;
1
H-NMR (200 MHz, CDCl
3
): d 3.89 (s, 3H), 6.98 (d, J = 8
Hz, 2H), 7.45 (d, J = 8 Hz, 2H), 8.81 (s, 1H), 11.05 (s, 1H).
+ +
DART-MS (ESI , m/z): 236 (M ).
(
Z)-5-(4-Methylbenzylidene)-2,4-thiazolidinedione
(6c).
(e) W. Hanefeld, V. Helfrich, M. Jalili and M. Schlitzer, Arch.
Pharm., 1993, 326, 359.
1
H-NMR (200 MHz, CDCl ): d 2.43 (s, 3H), 7.27 (d,
3
J = 8 Hz, 2H), 7.39 (d, J = 8 Hz, 2H), 8.81 (s, 1H), 10.98
+ +
s, 1H). DART-MS (ESI , m/z): 220 (M ).
12 (a) M. Tuncbine, O. B. Dundar, G. Ayhan-Kilcigil, M. Ceylan,
A. Waheed, E. J. Verspohl and R. Ertan, Il Farmaco, 2003, 58, 79;
(
(
b) D. A. Clark, S. W. Goldstein, R. A. Volkmann, J. F. Eggler,
G. F. Holland, B. Hulin, R. W. Stevenson, E. M. Kreutzer,
E. M. Gibbs, M. N. Krupp, C. H. Lamphere, F. J. Rajeskas,
W. H. Kappeler, W. H. McDermott, N. J. Hutson and
M. R. Johnson, J. Med. Chem., 1991, 34, 319; (c) N. B. Levshyn,
N. B. Curkan, K. A. V’yunov and A. I. Ginak, Zh. Prikl. Khim.,
(
Z)-5-(2-Hydroxybenzylidene)-2,4-thiazolidinedione
(6d).
1
H-NMR (300 MHz, DMSO-d
6
): d 6.94 (q, J = 8.1 Hz,
2
1
H), 7.31 (t, J = 8.7 Hz, 2H), 8.01 (s, 1H), 10.53 (s, 1H),
+ +
2.51 (s, 1H). DART-MS (ESI , m/z): 222 (M ).
1983, 56, 1453; (d) K. Popov-Pergal, Z. Chekovich and M. Pergal,
Zh. Obshch. Khim., 1994, 61, 2112.
(Z)-5-(4-Fluorobenzylidene)-2,4-thiazolidinedione
(6k).
1
13 K. M. Koeller and C. H. Wong, Nature, 2001, 409, 232.
14 B. G. Davis and V. Boyer, Nat. Prod. Rep., 2001, 18, 618.
15 X. W. Feng, C. Li, N. Wang, K. Li, W. Zhang, Z. Wang and
X. Yu, Green Chem., 2009, 11, 1933.
6 Y. A. Sonawane, S. B. Phadtare, B. N. Borse, A. R. Jagtap and
H-NMR (200 MHz, CDCl
3
): d 7. 14 (d, J = 10 Hz, 1H),
7
.47 (d, J = 6 Hz, 2H), 7.81 (s, 1H), 11.28 (s, 1H). DART-MS
+ +
ESI , m/z): 224 (M ).
(
1
G. S. Shankarling, Org. Lett., 2010, 12, 1456.
17 R. Csuk and B. I. Glanzer, Chem. Rev., 1991, 91, 49.
Acknowledgements
1
1
2
8 G. Fronza, C. Fugatti, L. Majori, G. Pedrocchi-Fantoni and
F. Spreafico, J. Org. Chem., 1982, 47, 3289.
9 G. Fronza, C. Fugatti, P. Grasseli, G. Poli and S. Servi,
Biocatalysis, 1990, 3, 51.
0 T. Kitazume and N. Ishikawa, Chem. Lett., 1984, 1815.
Authors are thankful to Professor D. B. Ingle for his valuable
suggestions and discussions. One of the authors URP is
grateful to University Grants Commission, New Delhi for
the award of research fellowship.
21 B. Pscheidt and A. Glieder, Microb. Cell Fact., 2008, 7, 25.
2
2 Y. Momose, K. Meguro, H. Ikeda, C. Hatanaka, S. Oi and
T. Sodha, Chem. Pharm. Bull., 1991, 39, 1440.
Notes and references
2
3 Y. Luo, L. Ma, H. Zheng, L. Chen, R. Li, C. He, S. Yang, X. Ye,
Z. Chen, Z. Li, Y. Gao, J. Han, G. He, L. Yang and Y. Wei,
J. Med. Chem., 2010, 53, 273.
1
(a) Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon
press, Oxford, 1991, vol. 2, p.133; (b) G. Jones, Org. React., 1967,
2
4 Z. Xia, C. Knaak, J. Ma, Z. M. Beharry, C. McInnes, W. Wang,
A. S. Kraft and C. D. Smith, J. Med. Chem., 2009, 52, 74.
15, 204.
2
(a) J. Wang, R. P. Discordia, G. A. Crispino, J. Li, J. A. Grosso,
R. Polniaszek and V. C. Truc, Tetrahedron Lett., 2003, 44, 4271;
25 (a) K. Athenstaedt and G. Daum, J. Biol. Chem., 2003, 278, 23317;
(b) SGD pages: Database Copyright 1997–2008, YeastCyc:
Saccharomyces cerevisiae Biochemical Pathway Overview, 2008.
26 (a) B. M. Reddy, M. K. Patil, K. N. Rao and G. K. Reddy, J. Mol.
Catal. A: Chem., 2006, 258, 302; (b) M. Gupta, R. Gupta and
M. Anand, Beilstein J. Org. Chem., 2009, 5, 68; (c) K. F. Shelke,
S. B. Sapkal, G. K. Kakade, S. A. Sadaphal, B. B. Shingate and
M. S. Shingare, Green Chem. Lett. Rev., 2010, 3, 17;
(d) D. H. Yangt, B. Y. Yangt, B. C. Chentt and S. Y. Chentf,
Org. Prep. Proced. Int., 2006, 38, 81.
(
(
b) J. K. Gallos and A. E. Koumbis, ARKIVOC, 2003, vi, 135;
c) G. Sabitha, G. S. K. K. Reddy, M. Rajkumar, J. S. Yadav, K.
V. S. Ramakrishna and A. C. Kunwar, Tetrahedron Lett., 2003, 44,
455; (d) S. Marcaccini, R. Pepino, M. C. Pozo, S. Basurto,
M. G. Valverda and T. Torroba, Tetrahedron Lett., 2004, 45,
999; (e) C. Xing and S. Zhu, J. Org. Chem., 2004, 69, 6486.
7
3
3
(a) J. Cossy, C. Menciu, H. Rakotoarisoa, P. H. Kahn and
J. R. Desmurs, Bioorg. Med. Chem. Lett., 1999, 9, 3439;
(b) S. L. Gaonkar and H. Shimizu, Tetrahedron, 2010, 66, 3314;
This journal is c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 49–51 51