Communication
Inorg. Chem. 2014, 53, 7837–7847; b) D. Volz, A. F. Hirschbiel, D. M. Zink,
J. Friedrichs, M. Nieger, T. Baumann, S. Brase, C. Barner-Kowollik, J. Mater.
Chem. C 2014, 2, 1457–1462; c) V. W. W. Yam, V. K. M. Au, S. Y. L. Leung,
Chem. Rev. 2015, 115, 7589–7728; d) M. Wallesch, A. Verma, C. Flechon,
H. Flugge, D. M. Zink, S. M. Seifermann, J. M. Navarro, T. Vitova, J. Got-
tlicher, R. Steininger, L. Weinhardt, M. Zimmer, M. Gerhards, C. Heske, S.
Brase, T. Baumann, D. Volz, Chem. Eur. J. 2016, 22, 16400–16405; e) F.
Bäppler, M. Zimmer, F. Dietrich, M. Grupe, M. Wallesch, D. Volz, S. Brase,
M. Gerhards, R. Diller, Phys. Chem. Chem. Phys. 2017, 19, 29438–29448.
a) A. Hammami, B. Marsan, Patent US 20060127775 A1, 2006; b) Y. Li, B.
Sun, Patent US 20160099412 A1, 2016; c) J. H. Huang, P. H. Lin, W. M. Li,
K. M. Lee, C. Y. Liu, ChemSusChem 2017, 10, 2284–2290; d) B. Hemavathi,
A. V. Kesavan, G. K. Chandrashekara, P. C. Ramamurthy, R. K. Pai, T. N.
Ahipa, R. G. Balakrishna, React. Funct. Polym. 2018, 133, 1–8.
A. L. Balch, K. Winkler, Chem. Rev. 2016, 116, 3812–3882.
a) D. Purdela, R. Vîlceanu, Chimia compuşilor organici al fosforului şi al
acizilor lui, Ed. Academiei Republicii Socialiste România, Bucureşti, 1965;
b) D. E. C. Corbridge, Phosphorus. Chemistry, Biochemistry and Technology,
6 ed., CRC Press, Taylor & Francis Group, New York, 2013.
a) E. Le Gall, K. Ben Aissi, I. Lachaise, M. Troupel, Synlett 2006, 954–956;
b) M. T. Honaker, J. M. Hovland, R. N. Salvatore, Curr. Org. Synth. 2007, 4,
31–45.
The short thermal jump in the beginning of the process (the
temperature/time curves, see the Supporting Information) can
be roughly estimated in terms of the bond breaking/bond
forming during the disassembling of the Pn 3D network under
the action of the hydroxide anions (Pn → A, B → C, D → E,
Scheme 1). Indeed, according to,[30] the energy of P–P bonds,
which are broken, is ≈ 200 kJ/mol while the energies of forming
P=O and P–H bonds are ≈ 640 and ≈ 300 kJ/mol that corre-
sponds to the approximated energy balance as ≈ +700 kJ/mol,
i.e. the process is to be actually exothermic.
[6]
[7]
[8]
Conclusion
Triarylphosphines, top requested ligands, synthetic intermedi-
ates and components of high-tech and bioactive metal com-
plexes, have become much more easily accessible owing to
their selective synthesis from red phosphorus (Pn) and aryl
fluorides in the superbasic media KOH/polar non-hydroxylic
complexing solvent-ligand (L) developed here. The process is
realized via three consecutive different SNAr reactions involving
polyphosphide supernucleophilic species generated from the
disassembling of the Pn molecule under the action of hydroxide
anion. The synthesis is readily scalable and avoids toxic, irrita-
tive and ecologically malignant phosphorus chlorides, organo-
metallics, and harsh conditions inherent in previous methods.
[9]
[10]
[11]
a) Q. Wang, D. Deredas, C. Huynh, M. Schlosser, Chem. Eur. J. 2003, 9,
570–574; b) J. Keller, C. Schlierf, C. Nolte, P. Mayer, B. F. Straub, Synthesis
2006, 354–365.
a) Z. Herseczki, I. Gergely, C. Hegedus, A. Szollosy, J. Bakos, Tetrahedron:
Asymmetry 2004, 15, 1673–1676; b) P. H. Fries, D. Imbert, J. Chem. Eng.
Data 2010, 55, 2048–2054; c) A. E. Carpenter, G. W. Margulieux, M. D.
Millard, C. E. Moore, N. Weidemann, A. L. Rheingold, J. S. Figueroa,
Angew. Chem. Int. Ed. 2012, 51, 9412–9550; Angew. Chem. 2012, 124,
9546; d) A. Zhu, H. Zhou, L. Jin, Patent CN 108178773, 2018.
S. H. Huang, J. M. Keith, M. B. Hall, M. G. Richmond, Organometallics
2010, 29, 4041–4057.
“Aluminium”: E. I. Troyansky, in Encyclopedia of Reagents for Organic Syn-
thesis (e-EROS), Wiley, 2017.
G. Bettermann, W. Krause, G. Riess, T. Hofmann, Phosphorus Compounds,
Inorganic, in “Ullmann's Encyclopedia of Industrial Chemistry”, Wiley-VCH,
Weinheim, vol. 27, 2000.
a) Y. H. Budnikova, J. Perichon, D. G. Yakhvarov, Y. M. Kargin, O. G. Siny-
ashin, J. Organomet. Chem. 2001, 630, 185–192; b) D. G. Yakhvarov, Y. H.
Budnikova, D. I. Tazeev, O. G. Sinyashin, Russ. Chem. Bull. 2002, 51, 2059–
2064; c) Y. H. Budnikova, D. G. Yakhvarov, O. G. Sinyashin, Patent Ru
2221805, 2004; d) V. A. Milyukov, Y. H. Budnikova, O. G. Sinyashin, Russ.
Chem. Rev. 2005, 74, 781–805; e) Y. H. Budnikova, T. V. Gryaznova, V. V.
Grinenko, Y. B. Dudkina, M. N. Khrizanforov, Pure Appl. Chem. 2017, 89,
311–330.
[12]
[13]
[14]
Acknowledgments
The research has been carried out in accordance with the ap-
proved plans for research projects at the IPC RAS State Registra-
tion No. AAAA-A16-116112510005-7. We thank the Baikal
Analytical Centre for collective use of the Siberian Branch of the
Russian Academy of Sciences for the equipment.
[15]
Keywords: Red phosphorus · Phosphines · Aromatic
substitution · Synthetic methods · Superbase systems
[16]
[17]
[18]
N. Mezailles, M. Demange, E. Nicolas, Patent WO 2013114311, 2013.
B. M. Cossairt, C. C. Cummins, New J. Chem. 2010, 34, 1533–1536.
E. R. Bornancini, R. A. Alonso, R. A. Rossi, J. Organomet. Chem. 1984, 270,
177–183.
a) H. J. Cristau, J. Pascal, F. Plenat, Tetrahedron Lett. 1990, 31, 5463–5466;
b) “Nickel(II) Bromide”: T. Y. Luh, C. H. Kuo, in Encyclopedia of Reagents
for Organic Synthesis (e-EROS), Wiley, 2001.
[1] a) “Triphenylphosphine”: J. E. Cobb, C. M. Cribbs, B. R. Henke, D. E. Ueh-
ling, A. G. Hernan, C. Martin, C. M. Rayner, in Encyclopedia of Reagents
for Organic Synthesis (e-EROS), Wiley, 2005; b) H. Guo, Q. Xu, O. Kwon, J.
Am. Chem. Soc. 2009, 131, 6318–6319; c) “Tri(1-naphthyl)phosphine”: H.
Wu, J. Chen, in Encyclopedia of Reagents for Organic Synthesis (e-EROS),
Wiley, 2009; d) M. Hirai, N. Tanaka, M. Sakai, S. Yamaguchi, Chem. Rev.
2019, 119, 8291–8331.
[2] a) H. A. van Kalkeren, F. L. van Delft, F. P. J. T. Rutjes, Pure Appl. Chem.
2013, 85, 817–828; b) Z. Hosseinzadeh, A. Ramazani, Curr. Org. Chem.
2018, 22, 1589–1599.
[3] a) G. Schmid, Strem Chem. 2009, 24, 3–10; b) L. Zhao, N. Komatsu, “Syn-
thesis, size separation, characterization and surface engineering of su-
perparamagnetic iron oxide nanoparticles for biomedical applications”,
in Magnetic Nanoparticles (Ed.: N. P. Sabbas), Nova Science Publishers, Inc.
Hauppauge, N. Y, 2014, pp. 95–111; c) Y. C. Ong, S. Roy, P. C. Andrews,
G. Gasser, Chem. Rev. 2019, 119, 730–796; d) M. V. Babak, Y. Zhi, B. Czarny,
T. B. Toh, L. Hooi, E. K.-H. Chow, W. H. Ang, D. Gibson, G. Pastorin, Angew.
Chem. Int. Ed. 2019, 58, 8109–8114; Angew. Chem. 2019, 131, 8193.
[4] a) Y. J. Zhu, F. Chen, Chem. Rev. 2014, 114, 6462–6555; b) C. Coughlan,
M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, K. M. Ryan, Chem. Rev. 2017,
117, 5865–6109.
[19]
[20]
[21]
T. L. Schull, S. L. Brandow, W. J. Dressick, Tetrahedron Lett. 2001, 42, 5373–
5376.
a) B. A. Trofimov, N. K. Gusarova, Mendeleev Commun. 2009, 19, 295–302;
b) N. K. Gusarova, S. N. Arbuzova, B. A. Trofimov, Pure Appl. Chem. 2012,
84, 439–459; c) G. A. Abakumov, A. V. Piskunov, V. K. Cherkasov, I. L.
Fedushkin, V. P. Ananikov, D. B. Eremin, E. G. Gordeev, I. P. Beletskaya,
A. D. Averin, M. N. Bochkarev, A. A. Trifonov, U. M. Dzhemilev, V. A.
D′yakonov, M. P. Egorov, A. N. Vereshchagin, M. A. Syroeshkin, V. V. Joui-
kov, A. M. Muzafarov, A. A. Anisimov, A. V. Arzumanyan, Y. N. Kononevich,
M. N. Temnikov, O. G. Sinyashin, Y. H. Budnikova, A. R. Burilov, A. A.
Karasik, V. F. Mironov, P. A. Storozhenko, G. I. Shcherbakova, B. A. Trofi-
mov, S. V. Amosova, N. K. Gusarova, V. A. Potapov, V. B. Shur, V. V. Bur-
lakov, V. S. Bogdanov, M. V. Andreev, Russ. Chem. Rev. 2018, 87, 393–507.
a) A. V. Artem′ev, S. F. Malysheva, A. O. Korocheva, I. Y. Bagryanskaya,
Heteroat. Chem. 2012, 23, 568–573; b) V. A. Kuimov, S. F. Malysheva, N. K.
Gusarova, A. O. Korocheva, B. A. Trofimov, J. Sulfur Chem. 2014, 35, 137–
144; c) A. V. Artem′ev, N. K. Gusarova, A. O. Korocheva, S. F. Malysheva,
[22]
[5] a) D. Volz, M. Wallesch, S. L. Grage, J. Gottlicher, R. Steininger, D. Batch-
elor, T. Vitova, A. S. Ulrich, C. Heske, L. Weinhardt, T. Baumann, S. Brase,
Eur. J. Org. Chem. 2019, 6240–6245
6244
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim