Page 7 of 9
Journal of the American Chemical Society
(Figure 3c) where the vinylic hydrogen contains about 62%
REFERENCES
(1) Ochiai, M.; Masaki, Y.; Shiro, M. J. Org. Chem. 1991, 56, 5511–
5513.
(2) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Simon-
sen, A. J. J. Org. Chem. 1996, 61, 6547–6551.
(3) Bouma, M. J.; Olofsson, B. Chem. Eur. J. 2012, 18, 14242–14245.
(4) Brand, J. P.; Chevalley, C.; Scopelliti. R.; Waser, J. Chem. Eur. J.
2012, 18, 5655 – 5666.
(5) Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2015, 54, 8876–
8878.
(6) Waser, J. Top. Curr. Chem. 2016, 373, 187–222.
(7) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem. Int. Ed. 2009,
48, 9346 –9349.
(8) Fernandez Gonzalez, D.; Brand, J. P.; Waser, J. Chem. Eur. J. 2010,
16, 9457–9461.
(9) Shi, H.; Fang, L.; Tan. C.; Shi, L.; Zhang, W.; Li. C. C.; Luo, T.;
Yang, Z. J. Am. Chem. Soc. 2011, 133, 14944–14947.
(10) Liu, X.; Wang, Z., Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134,
14330−14333.
1
2
3
4
5
6
7
8
deuterium (Figure 3c). Using the structurally related di-substi-
tuted vinylbenziodoxolone (15)46 and sodium phenoxide, we
demonstrated conceptually similar phenyl-I bond cleavage to
generate (2-iodovinyl)benzene 16 in 50% yield under blue LED
irradiation; while no reactivity was observed in the dark (Figure
3d). This experiment established that phenoxide (deprotonated
phenol) is the electron donor and that photoinduced electron
transfer can also promote phenyl-I cleavage in structurally re-
lated di-substituted vinylbenziodoxolone 15. Lastly, by apply-
ing mechanistic concepts elucidated above, we utilized a di-
boronate ester and pyridine as electron donor species47, result-
ing in reductive phenyl-I cleavage of EBX 2a upon visible light
irradiation to produce (iodoethynyl)benzene (17) in 55% yield
(Figure 3e).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
CONCLUSIONS
We report new reactivity between ethynylbenziodoxol(on)es
and phenols to afford a diverse collection of (Z)-2-iodovinyl
phenyl ether derivatives under irradiation with visible light. To
generate the (Z)-2-iodovinyl phenyl ether products, we propose
a photoinduced electron transfer step involving an intermediary
vinylbenziodoxolone-phenoxide EDA complex that subse-
quently leads to the unprecedented phenyl-I bond cleavage. Us-
ing the (Z)-2-iodovinyl phenyl ethers as precursors, a series of
transition metal-catalyzed chemistries were performed to access
unique tri-substituted alkene derivatives with significant control
of stereo and regiochemistry, underscoring the potential of this
transformation in the pharmaceutical and agrochemical indus-
tries.
(11) Wang, Z.; Li, X.; Huang, Y. Angew. Chem. Int. Ed. 2013, 52,
14219 –14223.
(12) Frei, R.; Waser, J. J. Am. Chem. Soc. 2013, 135, 9620–9623.
(13) Frei, R.; Wodrich, M. D.; Hari, D. P.; Borin, P. A.; Chauvier, C.;
Waser, J. J. Am. Chem. Soc. 2014, 136, 16563–16573.
(14) Xie, F.; Qi, Z.; Yu, S.; Li, X. J. Am. Chem. Soc. 2014, 136, 4780–
4787.
(15) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem.
Soc. 2014, 136, 2280−2283.
(16) Le Vaillant, F.; Courant, T.; Waser, J. Angew. Chem., Int. Ed.
2015, 54, 11200–11204.
(17) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.;
Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196–11199.
(18) Aubineau, T.; Cossy, J. Chem. Commun. 2013, 49, 3303−3305.
(19) Chen, C. C.; Waser, J. Chem. Commun. 2014, 50, 12923−12926.
(20) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2016, 138, 2190−2193.
(21) Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2017, 139, 8420−8423.
(22) Lu, B., Wu, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 11598–
11601.
(23) Wu, J.; Yoshikai, N. Angew. Chem., Int. Ed. 2015, 54, 11107–
11111.
(24) Wu, J.; Deng, X.; Hirao, H.; Yoshikai, N. J. Am. Chem. Soc. 2016,
138, 9105–9108.
(25) Rappoport, Z., Ed.; The Chemistry of Phenols. John Wiley & Sons,
Ltd: Chichester, 2003.
(26) Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature 2014, 515,
249−252.
(27) Thakur, M. K.; Paramanik, V. Horm. Res. 2009, 71, 194–200.
(28) Brent, G. A. N Eng J Med. 1994, 331, 847-853.
(29) Pezawas, L.; Meyer-Lindenberg, A.; Drabant, E. M.; Verchinski,
B. A.; Munoz, K. E.; Kolachana, B. S.; Egan, M. F.; Mattay, V. S.;
Hariri, A. R.; Weinberger, D. R. Nat. Neurosci. 2005, 8, 828–834.
(30) Jat, K.R.; Khairwa, A. Pulm. Pharmacol. Ther. 2013, 26, 239–
248.
(31) Liu, B.; Lim, C.-H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139,
13616–13619.
(32) Horspool, W. M. In The Chemistry of Phenols; Rappoport, Z., Ed.;
John Wiley & Sons, Ltd: Chichester, 2003; pp 1016−1085.
(33) Rosokha, S. V.; Kochi, J. K. F Acc. Chem. Res. 2008, 41, 641–
653.
(34) Lima, C. G. S.; Lima, T. d. M.; Duarte, M.; Jurberg, I. D.; Paixꢀo,
M. W. ACS Catal. 2016, 6, 1389–1407.
(35) Arceo, E.; Jurberg, I. D.; ꢁlvarez-Fernández, A.; Melchiorre, P.
Nat. Chem. 2013, 5, 750−756.
ASSOCIATED CONTENT
Supporting Information. General Information; Reaction Devel-
opment and Optimization; X-ray crystallographic coordinates for
structures of 3ab; UV-Visible Spectroscopy; Computational De-
tails; Characterizations; NMR Spectrums.
The Supporting Information is available free of charge on the ACS
Publications website.
AUTHOR INFORMATION
Corresponding Author
Garret M. Miyake
*garret.miyake@colostate.edu
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by Colorado State University and the Ad-
vanced Research Projects Agency-Energy (DE-AR0000683). Re-
search reported in this publication was supported by the National
Institute of General Medical Sciences of the National Institutes of
Health under Award Number R35GM119702. The content is solely
the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health. C.-H.L is
grateful for an NIH F32 Postdoctoral Fellowship (F32GM122392).
We thank Brian Newell for acquiring and solving the crystallo-
graphic structure of compound 3ab. We acknowledge the use of
computational resources provided by the XSEDE - Comet super-
computer (Grant Number CHE 160041).
(36) Reddy, C. V.; Kingston, J. V.; Verkade, J. G. J. Org. Chem. 2008,
73, 3047–3062.
(37) Ma, D.; Cai Q. Acc. Chem. Res. 2008, 41, 1450–1460.
(38) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122,
4020–4028.
7
ACS Paragon Plus Environment