6 Z. M. Yang, G. L. Liang, M. L. Ma, A. S. Abbah, W. W. Lu and
B. Xu, Chem. Commun., 2007, 843–845.
7 Z. Yang, G. Liang, Z. Guo and B. Xu, Angew. Chem., Int. Ed., 2007,
46, 8216–8219.
8 S. Bhuniya, S. M. Park and B. H. Kim, Org. Lett., 2005, 7, 1741–1744;
Y. Nagai, L. D. Unsworth, S. Koutsopoulos and S. G. Zhang, J.
Controlled Release, 2006, 115, 18–25; B. Xu, Langmuir, 2009, 25,
8375–8377; G. L. Liang, Z. M. Yang, R. J. Zhang, L. H. Li,
Y. J. Fan, Y. Kuang, Y. Gao, T. Wang, W. W. Lu and B. Xu,
Langmuir, 2009, 25, 8419–8422.
9 T. Muraoka, C. Y. Koh, H. G. Cui and S. I. Stupp, Angew. Chem.,
Int. Ed., 2009, 48, 5946–5949; Y. L. Yang, U. Khoe, X. M. Wang,
A. Horii, H. Yokoi and S. G. Zhang, Nano Today, 2009, 4, 193–
210.
Fig. 3 Dynamic strain sweep and dynamic frequency sweep of gel I, gel
III and gel V.
10 Z. M. Yang, H. W. Gu, D. G. Fu, P. Gao, J. K. Lam and B. Xu, Adv.
Mater., 2004, 16, 1440–1444.
11 R. V. Ulijn and A. M. Smith, Chem. Soc. Rev., 2008, 37, 664–
675.
12 S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato and
I. Hamachi, Nat. Mater., 2004, 3, 58–64.
13 B. G. Xing, C. W. Yu, K. H. Chow, P. L. Ho, D. G. Fu and B. Xu, J.
Am. Chem. Soc., 2002, 124, 14846–14847.
14 M. Suzuki, M. Yumoto, M. Kimura, H. Shirai and K. Hanabusa,
Chem. Commun., 2002, 884–885.
15 R. Iwaura, K. Yoshida, M. Masuda, K. Yase and T. Shimizu, Chem.
Mater., 2002, 14, 3047–3053.
16 D. J. Adams, M. F. Butler, W. J. Frith, M. Kirkland, L. Mullen and
P. Sanderson, Soft Matter, 2009, 5, 1856–1862.
17 Y. Gao, Y. Kuang, Z.-F. Guo, Z. Guo, I. J. Krauss and B. Xu, J. Am.
Chem. Soc., 2009, 131, 13576–13577.
interactions of ligand–ligand themselves, thus significantly increasing
the viscoelastic properties of hydrogels. Compared with the critical
strain of gel I (0.4%), the critical strains of gel III and gel V are around
1.5% and 3.9%, which means that gel III and gel V form relatively
robust network structures. Fig. 3B shows the frequency dependence
of storage moduli (G0) and loss moduli (G00) for the gels I, III and V,
the values of G0 of these hydrogels exhibit little dependence on the
frequency, suggesting that the matrices of those gels have a good
tolerance to the external shear force, which agrees with the
morphology revealed by the transmission electron micrograph
(TEM).
In conclusion, we demonstrated nitrilotriacetic acid is a useful
functional group for the construction of supramolecular hydrogels
and metallogels. This work also supports that the cooperative
stabilization,22 provided by p–p interactions, hydrogen bonding, and
metal–ligand bonds, is a powerful strategy for developing soft
materials. In addition, the principle validated in this work should be
applicable for the development of other hydrogels that use metal–
ligand coordination bonds.
18 J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
Wiley-VCH, 1995.
19 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133–3159;
A. Y. Y. Tam, K. M. C. Wong, N. Y. Zhu, G. X. Wang and
V. W. W. Yam, Langmuir, 2009, 25, 8685–8695; A. Y. Y. Tam,
K. M. C. Wong and V. W. W. Yam, J. Am. Chem. Soc., 2009, 131,
6253–6260; N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005,
34, 821–836; S. Banerjee, R. K. Das and U. Maitra, J. Mater.
Chem., 2009, 19, 6649–6687.
20 S. A. Joshi and N. D. Kulkarni, Chem. Commun., 2009, 2341–2343;
S. Fujii and J. M. Lehn, Angew. Chem., Int. Ed., 2009, 48, 7635–
7638; M. O. M. Piepenbrock, G. O. Lloyd, N. Clarke and
J. W. Steed, Chem. Rev., 2010, 110, 1960–2004.
21 M. A. Sharaf, H. A. Arida, S. A. Sayed, A. A. Younis and
A. B. Farag, J. Appl. Polym. Sci., 2009, 113, 1335–1344.
22 M. M. Pires and J. Chmielewski, J. Am. Chem. Soc., 2009, 131, 2706–
2712.
23 B. G. Xing, M. F. Choi and B. Xu, Chem.–Eur. J., 2002, 8, 5028–5032;
Q. G. Wang, Z. M. Yang, X. Q. Zhang, X. D. Xiao, C. K. Chang and
B. Xu, Angew. Chem., Int. Ed., 2007, 46, 4285–4289; Q. G. Wang,
Z. M. Yang, Y. Gao, W. W. Ge, L. Wang and B. Xu, Soft Matter,
2008, 4, 550–553.
24 B. G. Xing, M. F. Choi and B. Xu, Chem. Commun., 2002, 362–363;
J. B. Beck and S. J. Rowan, J. Am. Chem. Soc., 2003, 125, 13922–
13923.
The authors acknowledge the financial support from start-up grant
from Brandeis University and RGC (Hong Kong). We also thank
Prof. Nikolaus Grigorieff and Dr Chen Xu for the assistance on the
use of Brandeis EM facility.
Notes and references
1 L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104, 1201–1217;
Z. Yang and B. Xu, J. Mater. Chem., 2007, 17, 2385–2393; Z. Yang,
G. Liang and B. Xu, Acc. Chem. Res., 2008, 41, 315–326;
A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc.
Rev., 2008, 37, 109–122.
2 Z. W. Yuan, W. J. Lu, W. M. Liu and J. C. Hao, Soft Matter, 2008, 4,
1639–1644.
25 C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang and
B. Xu, J. Am. Chem. Soc., 2004, 126, 3392–3393.
26 Y. Zhang, Y. Kuang, Y. Gao and B. Xu, Langmuir, 2011, 27, 529–
537.
3 M. Reches and E. Gazit, Science, 2003, 300, 625–627; A. Mahler,
M. Reches, M. Rechter, S. Cohen and E. Gazit, Adv. Mater., 2006,
18, 1365–1370; X. Yan, P. Zhu and J. Li, Chem. Soc. Rev., 2010,
39, 1877–1890.
27 P. M. Xulu, G. Filipcsei and M. Zrinyi, Macromolecules, 2000, 33,
1716–1719; C. R. Mayer, V. Cabuil, T. Lalot and R. Thouvenot,
Angew.Chem., Int. Ed., 1999, 38, 3672–3675; C. R. Mayer,
V. Cabuil, T. Lalot and R. Thouvenot, Adv. Mater., 2000, 12, 417–
420; M. Zrinyi, L. Barsi, D. Szabo and H. G. Kilian, J. Chem.
Phys., 1997, 106, 5685–5692.
4 T. C. Holmes, S. de Lacalle, X. Su, G. S. Liu, A. Rich and
S. G. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 6728–6733;
G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington,
J. A. Kessler and S. I. Stupp, Science, 2004, 303, 1352–1355;
V. Jayawarna, M. Ali, T. A. Jowitt, A. E. Miller, A. Saiani,
J. E. Gough and R. V. Ulijn, Adv. Mater., 2006, 18, 611.
5 Z. M. Yang, K. M. Xu, L. Wang, H. W. Gu, H. Wei, M. J. Zhang and
B. Xu, Chem. Commun., 2005, 4414–4416.
28 Z. M. Yang, H. W. Gu, J. Du, J. H. Gao, B. Zhang, X. X. Zhang and
B. Xu, Tetrahedron, 2007, 63, 7349–7357.
6806 | J. Mater. Chem., 2011, 21, 6804–6806
This journal is ª The Royal Society of Chemistry 2011