Journal of the American Chemical Society
Article
halides: a mechanistic perspective. Chem. Sci. 2011, 2, 1867.
(d) Montgomery, J. Organonickel Chemistry. In Organometallics in
Synthesis: Fourth Manual; Lipshutz, B. H., Ed.; Wiley: Hoboken, NJ,
2013; p 319. (e) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent
advances in homogeneous nickel catalysis. Nature 2014, 509, 299.
(f) Ananikov, V. P. Nickel: the “spirited horse” of transition metal
catalysis. ACS Catal. 2015, 5, 1964. (g) Zuo, Z.; Ahneman, D. T.; Chu,
L.; Terret, J. A.; Doyle, A. G.; MacMillan, D. W. C. Merging photoredox
with nickel catalysis: coupling of u-carboxyl sp3-carbons with aryl
halides. Science 2014, 345, 437. (h) Green, R. A.; Hartwig, J. F. Nickel-
catalyzed amination of aryl chlorides with ammonia or ammonium salts.
Angew. Chem., Int. Ed. 2015, 54, 3768. (i) Wang, Z.; Yin, H.; Fu, G. C.
Catalytic enantioconvergent coupling of secondary and tertiary
electrophiles with olefins. Nature 2018, 563, 379. (j) MacQueen, P.
M.; Tassone, J. P.; Diaz, C.; Stradiotto, M. Exploiting ancillary ligation
to enable nickel-catalyzed C-O cross-couplings of aryl electrophiles
with aliphatic alcohols. J. Am. Chem. Soc. 2018, 140, 5023. (k) Lee, S.-
C.; Liao, H.-H.; Chatupheeraphat, A.; Rueping, M. Nickel-catalyzed C-
S bond formation via decarbonylative thioetherification of esters,
amides, and intramolecular recombination fragment coupling of
thioesters. Chem. - Eur. J. 2018, 24, 3608.
(2) (a) Tsou, T. T.; Kochi, J. K. Reductive coupling of organometals
induced by oxidation. Detection of metastable paramagnetic inter-
mediates. J. Am. Chem. Soc. 1978, 100, 1634. (b) Tsou, T. T.; Kochi, J.
K. Mechanism of biaryl synthesis with nickel complexes. J. Am. Chem.
Soc. 1979, 101, 7547. (c) Jones, G. D.; McFarland, C.; Anderson, T. J.;
Vicic, D. A. Analysis of key steps in the catalytic cross-coupling of alkyl
electrophiles under Negishi-like conditions. Chem. Commun. 2005,
4211. (d) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. Bimetallic
oxidative addition involving radical intermediates in nickel-catalyzed
alkyl-alkyl Kumada coupling reactions. J. Am. Chem. Soc. 2013, 135,
12004. (e) Diccianni, J. B.; Katigbak, J.; Hu, C.; Diao, T. Mechanistic
characterization of (Xantphos)Ni(I)-mediated alkyl bromide activa-
tion: oxidative addition, electron transfer, or halogen-atom abstraction.
J. Am. Chem. Soc. 2019, 141, 1788.
Y.; Chatani, N. Ni(II)-catalyzed oxidative coupling between C(sp2)-H
in benzamides and C(sp3)-H in toluene derivatives. J. Am. Chem. Soc.
2014, 136, 15509. (d) Omer, H. M.; Liu, P. Computational study of Ni-
catalyzed C-H functionalization: factors that control the competition of
oxidative addition and radical pathways. J. Am. Chem. Soc. 2017, 139,
9909. (e) Li, Y.; Zou, L.; Bai, R.; Lan, Y. Ni(I)-Ni(III) vs. Ni(II)-
Ni(IV): mechanistic study of Ni-catalyzed alkylation of benzamides
with alkyl halides. Org. Chem. Front. 2018, 5, 615. (f) Patel, U. N.; Jain,
S.; Pandey, D. K.; Gonnade, R. G.; Vanka, K.; Punji, B. Mechanistic
aspects of pincer Ni(II)-catalyzed C-H bond alkylation of azoles with
alkyl halides. Organometallics 2018, 37, 1017.
(5) (a) Meucci, E. A.; Camasso, N. M.; Sanford, M. S. An
organometalllic NiIV complex that participates in competing trans-
metalation and C(sp2)-O bond-forming reductive elimination reac-
tions. Organometallics 2017, 36, 247. (b) D’Accriscio, F.; Borja, P.;
́
Saffon-Merceron, N.; Fustier-Boutignon, M.; Mezailles, N.; Nebra, N.
C-H bond trifluoromethylation of arenes enabled by a robust, high-
valent nickel(IV) complex. Angew. Chem., Int. Ed. 2017, 56, 12898.
(6) (a) Bayler, A.; Canty, A. J.; Ryan, J. H.; Skelton, B. W.; White, A. H.
Arylation of palladium(II) and platinum(II) by diphenyliodonium
triflate to form metal(IV) species, and a structural analysis of an isomer
of PtIMe2Ph(bpy) (bpy = 2,2’-bipyridine). Inorg. Chem. Commun.
2000, 3, 575. (b) Furuya, T.; Ritter, T. Carbon-fluorine reductive
elimination from a high-valent palladium fluoride. J. Am. Chem. Soc.
2008, 130, 10060. (c) Ball, N. D.; Kampf, J. W.; Sanford, M. S. Aryl-CF3
bond-forming reductive elimination from palladium(IV). J. Am. Chem.
Soc. 2010, 132, 2878. (d) Dubinsky-Davidchik, I.; Goldberg, I.; Vigalok,
A.; Vedernikov, A. N. Selective aryl-fluoride reductive elimination from
a platinum(IV) complex. Angew. Chem., Int. Ed. 2015, 54, 12447.
(e) Daryanavard, M.; Armstrong, D.; Lough, A. J.; Fekl, U. The first
palladium(IV) aryldiazenido complex: relevance for C-C coupling.
Dalton Trans. 2017, 46, 4004. (f) Yamamoto, K.; Li, J.; Garber, J. A. O.;
Rolfes, J. D.; Boursalian, G. B.; Borghs, J. C.; Genicot, C.; Jacq, J.; van
Gastel, J.; Neese, F.; Ritter, T. Palladium-catalysed electrophilic
aromatic C-H fluorination. Nature 2018, 554, 511.
(3) (a) Klein, H.-F; Bickelhaupt, A.; Jung, T.; Cordier, G. Syntheses
and properties of the first octahedral diorganonickel(IV) compounds.
Organometallics 1994, 13, 2557. (b) Carnes, M.; Buccella, D.; Chen, J.
Y. C.; Ramirez, A. P.; Turro, N. J.; Nuckolls, C.; Steigerwald, M. A stable
tetraalkyl complex of nickel(IV). Angew. Chem., Int. Ed. 2009, 48, 290.
(c) Camasso, N. M.; Sanford, M. S. Design, synthesis, and carbon-
heteroatom coupling reactions of organometallic nickel(IV) complexes.
Science 2015, 347, 1218. (d) Bour, J. R.; Camasso, N. M.; Sanford, M. S.
Oxidation of Ni(II) to Ni(IV) with aryl electrophiles enables Ni-
mediated aryl-CF3 coupling. J. Am. Chem. Soc. 2015, 137, 8034.
(e) Zhou, W.; Schultz, J. W.; Rath, N. P.; Mirica, L. M. Aromatic
methoxylation and hydroxylation by organometallic high-valent nickel
complexes. J. Am. Chem. Soc. 2015, 137, 7604. (f) Martinez, G. E.;
Ocampo, C.; Park, Y. J.; Fout, A. R. Accessing pincer (bis)carbene
Ni(IV) complexes from Ni(II) via halogen and halogen surrogates. J.
Am. Chem. Soc. 2016, 138, 4290. (g) Schultz, J. W.; Fuchigami, K.;
Zheng, B.; Rath, N. P.; Mirica, L. M. Isolated Organometallic Ni(III)
and Ni(IV) complexes relevant to carbon-carbon bond-formation
reactions. J. Am. Chem. Soc. 2016, 138, 12928. (h) Chong, E.; Kampf, J.
W.; Ariafard, A.; Canty, A. J.; Sanford, M. S. Oxidatively induced C-H
activation at high-valent nickel. J. Am. Chem. Soc. 2017, 139, 6058.
(7) Bour, J. R.; Camasso, N. M.; Meucci, E. A.; Kampf, J. W.; Canty, A.
J.; Sanford, M. S. Carbon-carbon bond-forming reductive elimination
from isolated nickel(III) complexes. J. Am. Chem. Soc. 2016, 138,
16105.
(8) For related oxidations of [Ni(II)(CF3)2] complexes using AgBF4,
see: (a) Zhang, C.-P.; Wang, H.; Klein, A.; Biewer, C.; Stirnat, K.;
Yamaguchi, Y.; Xu, L.; Gomez-Benitz, V.; Vicic, D. A. A five-coordinate
nickel(II) fluoroalkyl complex as a precursor to a spectroscopically
detectable Ni(III) species. J. Am. Chem. Soc. 2013, 135, 8141. (b) Tang,
F.; Rath, N. P.; Mirica, L. M. Stable bis(trifluoromethyl)nickel(III)
complexes. Chem. Commun. 2015, 51, 3113.
(9) Fossey, J.; Lefort, D.; Sorba, J. Free radicals in organic chemistry;
Wiley: New York, 1995; p 307.
(10) Cooper, W. The effect of structure of diacyl peroxides on the
rates of initiation of the polymerization of styrene. J. Chem. Soc. 1951,
3106.
(11) Tp-supported high-valent organonickel complexes are light
sensitive and thus unstable under photolytic conditions.
(12) The consumption of 1 was determined by 11B NMR
spectroscopic analysis of the crude reaction mixture.
(13) Yu, S.; Dudkina, Y.; Wang, H.; Kholin, K. V.; Kadirov, M. K.;
Budnikova, Y.; Vicic, D. A. Accessing perfluoroalkyl nickel(II), (III),
and (IV) complexes bearing a readily attached [C4F8] ligand. Dalton
Trans. 2015, 44, 19443.
(14) Heating 3 at 100 °C for 12 h resulted in complete decomposition
of the starting material to form a mixture of nickel-containing products
including NiTp2.
́
́
(i) Rovira, M.; Roldan-Gomez, S.; Martin-Diaconescu, V.; Whiteoak,
C. J.; Company, A.; Luis, J. M.; Ribas, X. Trifluoromethylation of a well-
defined square-planar aryl-Ni(II) complex involving Ni(III)-CF3 and
Ni(IV)-CF3 intermediate species. Chem. - Eur. J. 2017, 23, 11662.
(j) Watson, M. B.; Rath, N. P.; Mirica, L. M. Oxidative C-C bond
formation reactivity of organometallic Ni(II), Ni(III), and Ni(IV)
complexes. J. Am. Chem. Soc. 2017, 139, 35.
(15) The yield of 4 appears to be limited by the competitive
decomposition of this NiIV product at 95 °C. Analysis of the crude
reaction between A and 3 revealed that only 11% (∼1.8 equiv relative to
Ni) of the initial A was consumed at the time of maximum NiIV yield.
The remaining mass balance of the reaction was fluorobenzene and 4-
fluorobenzoic acid, presumably formed through H-atom abstraction
(4) (a) Aihara, Y.; Chatani, N. Nickel-catalyzed direct alkylation of C-
H bonds in benzamides and acrylamides with functionalized alkyl
halides via bidentate chelation assistance. J. Am. Chem. Soc. 2013, 135,
5308. (b) Aihara, Y.; Chatani, N. Nickel-catalyzed direct arylation of
C(sp3)-H bonds in aliphatic amides via bidentate chelation assistance. J.
Am. Chem. Soc. 2014, 136, 898. (c) Aihara, Y.; Tobisu, M.; Fukumoto,
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX