W. Pluempanupat, W. Chavasiri / Tetrahedron Letters 47 (2006) 6821–6823
6823
References and notes
PPh3 (2 eq)
OH
Cl
Cl3CCONH2 (2 eq)
1. (a) Hatakeyama, T.; Ito, S.; Nakamura, M.; Nakamura,
E. J. Am. Chem. Soc. 2005, 127, 14192–14193; (b)
Braddock, D. C.; Peyralans, J. J.-P. Tetrahedron 2005,
61, 7233–7240; (c) Evans, W. J.; Workman, P. S. Organo-
metallics 2005, 24, 1989–1991.
CH2Cl2, RT, 15 min
1, 2.0 mmol
2, 76%, 100% ee
Scheme 1. Chlorination of R-(ꢀ)-2-octanol.
2. Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A.
J. Org. Chem. 2001, 66, 7741–7744.
O
O
Cl2
3. (a) Comprehensive Organic Transformations; 2nd ed.;
Larock, R. C., Ed., Wiley-VCH: New York, 1999; pp
689–702; (b) Organic Syntheses; Copenhaver, J. E.,
Whaley, A. M., Eds.; Wiley and Sons: New York, 1941;
Vol. 1, pp 144–145; (c) Lewis, E. S.; Boozer, C. E. J. Am.
Chem. Soc. 1952, 74, 308–311; (d) Ireland, R. E.; Norbeck,
D. W.; Mandel, G. S.; Mandel, N. S. J. Am. Chem. Soc.
1985, 107, 3285–3294; (e) Lee, J. G.; Kang, K. K. J. Org.
Chem. 1988, 53, 3634–3637.
C NH2
Cl
C
Cl PPh3
+
PPh3
Cl2C C NH2
3
O
ROH
+
Cl
RCl + O=PPh3
R O PPh3
Cl2HC C NH2
4
Scheme 2. Proposed mechanism.
4. (a) Lepore, S. D.; Bhunia, A. K.; Mondal, D.; Cohn, P. C.;
Lefkowitz, C. J. Org. Chem. 2006, 71, 3285–3286; (b)
Yasuda, M.; Yamasaki, S.; Onishi, Y.; Baba, A. J. Am.
Chem. Soc. 2004, 126, 7186–7187; (c) Gomez, L.; Gelli-
bert, F.; Wagner, A.; Mioskowski, C. Tetrahedron Lett.
2000, 41, 6049–6052; (d) Drabowicz, J.; Luczak, J.;
Mikolajczyk, M. J. Org. Chem. 1998, 63, 9565–9568.
5. (a) Slagle, J. D.; Huang, T. T.-S.; Franzus, B. J. Org. Chem.
1981, 46, 3526–3530; (b) Downie, I. M.; Holmes, J. B.
Chem. Ind. (London) 1966, 900–901; (c) Hooz, J.; Gilani, S.
S. H. Can. J. Chem. 1968, 46, 86–87; (d) Bringmann, G.;
Schneider, S. Synthesis 1983, 139–141; (e) Magid, R. M.;
Fruchey, O. S.; Johnson, W. L.; Allen, T. G. J. Org. Chem.
1979, 44, 359–363; (f) Jang, D. O.; Park, D. J.; Kim, J.
Tetrahedron Lett. 1999, 40, 5323–5326; (g) Matveeva, E.
D.; Kurts, A. L.; Yalovskaya, A. I.; Nikishova, N. G.;
Bundel, Y. G. Zh. Org. Khim. 1989, 25, 652–653.
The mechanism for the conversion of alcohols into their
corresponding alkyl chlorides using PPh3/CCl4 has been
addressed.5a,11 We considered that the reaction using
PPh3/Cl3CCONH2 should proceed similarly (Scheme
2). PPh3 reacts with Cl3CCONH2 to give intermediate
3, which then reacts with the alcohol to give alkoxyphos-
phonium salt 4, which decomposes to give the alkyl
chloride and triphenylphosphine oxide.
The effect of external nucleophiles such as NaCl, tri-
methylsilyl azide (TMSN3) was also carefully exam-
ined.12 Surprisingly, external chloride did not increase
the % yield of the corresponding alkyl chloride. Simi-
larly, the alkyl chloride was still the predominant
product without concomitant formation of an alkyl
azide when external azide was added. This strongly
implies that the ion pair formed (4) is tightly bound such
that it does not react with added nucleophiles.5a,13
6. Chaysripongkul, S.; Pluempanupat, W.; Jang, D. O.;
Chavasiri, W., submitted for publication.
7. Only alkyl chloride and recovered alcohol were obtained
from varying the halogenated reagent, PPh3/Cl3CCONH2
ratio and reaction time.
1
8. (a) 2-Phenethyl chloride: H NMR (CDCl3): d 7.20–7.25
In summary, we have described a very efficient and con-
venient method for the preparation of alkyl chlorides
from alcohols using a combination of PPh3 and
Cl3CCONH2 as the reagent system.
(m, 5H), 3.63 (t, J = 7.4 Hz, 2H), 2.98 (t, J = 7.4 Hz, 2H).
1
(b) 1-Octyl chloride: H NMR (CDCl3): d 3.53 (t, J = 6.7
Hz, 2H), 1.77 (m, 2H), 1.20–1.48 (m, 10H), 0.89 (t, J =
6.7 Hz, 3H). (c) S-(+)-2-octyl chloride: 1H NMR (CDCl3):
d 4.01 (sex, J = 6.5 Hz, 1H), 1.69 (m, 2H), 1.28–1.50 (m,
11H), 0.89 (t, J = 6.7 Hz, 3H).
A typical experimental procedure is as follows: to
a stirred solution of alcohol (0.25 mmol) and PPh3
(0.5 mmol) in dry CH2Cl2 (0.5 mL) was added
Cl3CCONH2 (0.5 mmol) at rt (30 °C) under an N2
atmosphere. After 15 min, the reaction was quenched
with cold water and the presence of the corresponding
product in the crude mixture was determined by 1H
NMR utilizing toluene as an internal standard or alter-
natively was isolated by purification through silica gel
column chromatography.
9. Filippo, J. S.; Silbermann, J., Jr. J. Am. Chem. Soc. 1981,
103, 5588–5590.
10. The stereochemistry was determined by comparison with
S-(+)-2-octyl chloride by HPLC using commercially
available chiral columns (column cyclobond I 2000).
11. (a) Appel, R.; Halstenberg, M. In Organophosphorus
Reagents in Organic Synthesis; Cadogan, J. I. G., Ed.;
Academic Press: London, 1979, Chapter 9; (b) Tomo-
skoozi, I.; Gruber, L.; Radics, L. Tetrahedron Lett. 1975,
16, 2473–2476.
12. Conditions: (a) alcohol (1 equiv), PPh3 (1 equiv),
Cl3CCONH2 (1 equiv) and NaCl (5 equiv) at rt (30 °C)
or 40 °C, 1 h; (b) Alcohol (1 equiv), PPh3 (2 equiv),
Cl3CCONH2 (2 equiv) and TMSN3 (1.5 equiv) at rt
(30 °C) or 40 °C, 1 h.
13. (a) Jones, L. A.; Sumner, C. E.; Franzus, B., Jr.; Huang,
T. T.-S.; Snyder, E. I. J. Org. Chem. 1978, 43, 2821–2827;
(b) Weiss, R. G.; Snyder, E. I. J. Org. Chem. 1970, 35,
1627–1632.
Acknowledgements
Financial support from the Graduate school, Chu-
lalongkorn University is acknowledged. W.P. is grateful
to Chulalongkorn University for the HM. King Rama
IX 72th Anniversary scholarship.